Math, asked by satyarthi64, 10 months ago

The perimeter of a triangular field is 540 m and its sides are in the ratio 25:17:12

Find the area of the triangle.​

Answers

Answered by Anonymous
20

Given :

  • The perimeter of a triangle field is 540 m.

  • Sides are in the ratio 25:17:12

To find out:

Find the area of a triangle.

Formula used:

  • Perimeter of triangle = AB + BC + CA

  • Herons formula (Area of triangle ) = √s(s-a) (s-b) (s-c)

Solution:

Let the sides be 25x , 17x and 12x.

✪According to question:-

∴Perimeter = 25x + 17x + 12x

➞ 540 = 54x

➞ x = 540/54

➞ x = 10 m

Sides of triangle:

  • AB = 25x = 25 × 10 = 250 m

  • BC = 17x = 17 × 10 = 170 m

  • AC = 12x = 12 × 10 = 120 m

✯Semi perimeter = 540/2 = 270 m

By Herons Formula, Area of triangle field

 =  \sqrt{s(s - a)(s - b)(s - c)}

 =  \sqrt{270(270 - 250)(270 - 170)(270 - 120}

 =  \sqrt{270 \times 20 \times 100 \times 150}

 =  \sqrt{(3 \times 3 \times3 \times10 )( 10 \times 2 )(3 \times 5 \times 10)(10 \times 10 \times 10)}

 =  \sqrt{ {3}^{4}  \times  {10}^{5}  \times 2 \times 5}  \:  {m}^{2}

 =  \sqrt{ {3}^{4}  \times  {10}^{6} }  \:  {m}^{2}

 =  \sqrt{( {3}^{2} \times  {10}^{3}) {}^{2}   }  \:  {m}^{2}

 =  9 \times 1000 \:  {m}^{2}

 = \bold{ 9000 \: m {}^{2} }

Answered by anshi60
21

QuEsTiOn :-

The perimeter of a triangular field is 540 m and its sides are in the ratio 25:17:12. find the area of the triangle .

GiVeN :-

Perimeter of triangular field = 540m

And sides are in ratio 25 : 17 : 12 .

Heron's Formula

{\purple{\boxed{\large{\bold{Area \: of \:  \triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)} }}}}}

where a , b ,c are the sides of triangle and s is the semi perimeter.

SoLuTiOn :-

Let the sides are 25x , 17x , 12x

where , x is any positive number .

We know that ,

Perimeter of ∆ = sum of all three sides

25x + 17x + 12x = 540

54x = 540

x = 540/54

x = 10

Then ,

First side (a) = 25x = 25×10 = 250m

Second side (b) = 17x = 17×10 = 170m

Third side (c) = 12x = 12×10 = 120m

Semi \: perimeter \: (s) =  \frac{a  + b + c}{2}  \\  s =  \frac{540}{2}  \\  \\ s = 270 \\

So,

Area \: of \:  \triangle =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\   \:  \:  \:  \:   =  \sqrt{270(270 - 250)(270 - 170)(270 - 120)}  \\  \\  \:  \:  \:  \:  =  \sqrt{270 \times 20 \times 100 \times 150}  \\  \\  \:  \:  \:  \:  =  \sqrt{81000000}  \\  \\  \:  \:  \:  \:  =  \sqrt{9000 \times 9000}  \\  \\  \:  \:  \:  \:  = 9000 \:  {m}^{2}

Therefore,

{\red{\boxed{\large{\bold{The \: area \: of \: triangle \: = 9000\:sq.m }}}}}

Similar questions