Math, asked by JohnDurairajan, 6 months ago

The perimeter of an equilateral triangle is 3√3 cm. Find the area of the triangle​

Answers

Answered by prince5132
14

GIVEN :-

  • Perimeter of Equilateral triangle = 3√3 cm.

TO FIND :-

  • The area of Equilateral triangle.

SOLUTION :-

As we know that, in Equilateral triangle all the sides are equal so,

⇒ Perimeter of Equilateral ∆ = 3√3

⇒ sum of all sides = 3√3

⇒ side + side + side = 3√3

⇒ 3side = 3√3

⇒ side = 3√3/3

side = 3 cm.

Now as we know that,

⇒ Area of Equilateral ∆ = √3/4 × (side)²

⇒ Area of Equilateral ∆ = √3/4 × (√3)²

⇒ Area of Equilateral ∆ = √3/4 × √9

⇒ Area of Equilateral ∆ = √3/4 × 3

⇒ Area of Equilateral ∆ = 33/4 cm²

Hence the area of the equilateral triangle is 33/4 cm².

Answered by Anonymous
14

\underline{\frak{\qquad Given: \qquad}} \\  \\

  • The perimeter of an equilateral triangle is 3√3 cm.

\underline{\frak{\qquad To\:Find: \qquad}} \\  \\

  • Area of traingle = ?

\underline{\frak{\qquad Solution: \qquad}}\\

\qquad \quad\tiny{ \dag \:  \: \underline{\sf First\:of\:all\:let's  \: find \:  the \:  sides \:  of \:  equilateral \:  \Delta : }} \\  \\

:\implies \sf Perimeter  \: of \:  equilateral  \: \Delta = 3a \\  \\  \\

:\implies \sf 3 \sqrt{3}  = 3a \\  \\  \\

:\implies \sf  \dfrac{3 \sqrt{3}}{3}  = a \\  \\  \\

:\implies \sf \sqrt{3}  = a \\  \\  \\

:\implies  \underline{ \boxed{\sf a = \sqrt{3}\: cm}}\\  \\  \\

\therefore\:\underline{\textsf{Sides of equilateral $\Delta$ is \textbf{$\sqrt{\text 3}$ cm}}}. \\  \\

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad \quad\tiny{ \dag \:  \: \underline{\sf Now, let's  \: find \:  the \:  area \:  of \:  equilateral \:  \Delta : }} \\  \\

\dashrightarrow\:\:\sf Area_{ \tiny(of \:  equilateral \:  \Delta)} =  \dfrac{ \sqrt{3} }{4}  \times  {a}^{2}  \\  \\  \\

\dashrightarrow\:\:\sf Area_{ \tiny(of \:  equilateral \:  \Delta)} =  \dfrac{ \sqrt{3} }{4}  \times  { \left( \sqrt{3}  \right)}^{2}  \\  \\  \\

\dashrightarrow\:\:\sf Area_{ \tiny(of \:  equilateral \:  \Delta)} =  \dfrac{ \sqrt{3} }{4}  \times  { \sqrt{9}} \\  \\  \\

\dashrightarrow\:\:\sf Area_{ \tiny(of \:  equilateral \:  \Delta)} =  \dfrac{ \sqrt{3} }{4}  \times  { \sqrt{3 \times 3}} \\  \\  \\

\dashrightarrow\:\:\sf Area_{ \tiny(of \:  equilateral \:  \Delta)} =  \dfrac{ \sqrt{3} }{4}  \times  3 \\  \\  \\

\dashrightarrow\:\:\underline{\boxed{\sf Area_{ \tiny(of \:  equilateral \:  \Delta)} =  \dfrac{3 \sqrt{3} }{4}  \:  {cm}^{2}}} \\  \\  \\

\therefore\:\underline{\textsf{The area of equilateral $\Delta$ is \textbf{$ \dfrac{\text{3} \sqrt{3}}{ \text{4}}$ {cm}$^{ \text2}$ }}}. \\

══════════════════════════════════════════════════

Similar questions