Math, asked by sanaya13, 1 year ago

the perimeter of an equilateral triangle is 60 cm then its area( in cm)


Thatsomeone: area=100√3
jsdcorreo: Draw - http://triancal.esy.es/?l=4&p=60

Answers

Answered by yubraj111
5
as the side of the triangle= 20 cm
and area of an equilateral triangle =
  \frac{ \sqrt{3} }{4}  \times  {side}^{2}  =   \\ \frac{ \sqrt{3} }{4} 20 \times 20 = 100 \sqrt{3}

yubraj111: please mark as brainly
Answered by Anonymous
2

We have given that,

Perimeter = 60 cm

So, Semi Perimeter = \dfrac{60}{2} = 30 cm

Hence,the Length of each side will be :]

 \\ \sf a + a + a = 60  \\  \\

\\ \sf 3 a = 60  \\  \\

\\ \sf a  =  \dfrac{60}{3}  \\  \\

\purple{\sf a = 20 \: cm} \\

Now, we will find the area of equilateral triangle by given below formula :]

\bigstar\:\:\boxed{\underline{\underline  {\sf  Area = \sqrt{s(s - a)(s - b)(s - c)}}}} \:  \: \bigstar \\

Now, putting the given values in above formula we get :

: \implies\sf  Area = \sqrt{30(30 - 20)(30 - 20)(30- 20)} \\  \\

: \implies\sf  Area = \sqrt{30 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = \sqrt{3 \times 10 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = 10 \times 10 \sqrt{3}\\  \\

: \implies \underline{  \boxed{\sf  Area = 100 \sqrt{3} \: cm^{2} }} \\  \\

Similar questions