Math, asked by AnugrahaSunu1, 1 year ago

the perimeter of an equilateral triangle is 60cm. what is its area?

Answers

Answered by mayurpatil1
396
Perimeter = 60cm 
1 side = 60/3 = 20 cm
√s(s-a)(s-b)(s-c)s(s−a)(s−b)(s−c) 

s = 30 

√30(30-20)(30-20)(30-20)

=√30×10×10×10=√30000cm² = 100√3 cm²

mayurpatil1: sides
AnugrahaSunu1: okey
Ankit1408: 's' is half perimeter
Ankit1408: not side
mayurpatil1: ok
Ankit1408: s = (a + b + c ) / 2
Ankit1408: a , b , c are the sides of triangle
mayurpatil1: mg phila kraycha nahi ka
Ankit1408: what is this i don't understand..
mayurpatil1: where u live
Answered by gayatrikumari99sl
5

Answer:

100\sqrt{3}cm^{2} is the required area of an equilateral triangle .

Step-by-step explanation:

Explanation:

Given , perimeter of an equilateral triangle = 60cm

Equilateral triangle : A triangle with all three sides  equal  and also there  three angles are   equal. Each angle is 60 °

Let 'a' be the side of an equilateral triangle

Step 1:

Therefore , Perimeter of an equilateral triangle = 3a

⇒ 3a = 60  (perimeter of a equilateral triangle is 60cm given )

a = \frac{60}{3}  = 20 cm

Area of a equilateral triangle = (\frac{\sqrt{3} }{4} )a^{2}

⇒ Area = (\frac{\sqrt{3} }{4} )(20)^{2} = (\frac{\sqrt{3} }{4}  )400

⇒ Area = 100\sqrt{3}cm^{2} .

Final answer :

Hence , area of an equilateral triangle of side 20cm is 100\sqrt{3}cm^{2}

#SPJ2

Similar questions