Math, asked by gsjvz, 1 year ago

The perimeter of an isosceles triangle is \dfrac{43}{4} cm. If one of the side measures \dfrac{9}{4} cm. find the third side.

Answers

Answered by Brainly9b78
1
\large{\sf{\underline{\underline{Question}}}}



The perimeter of an isosceles triangle is \dfrac{43}{4} cm. If one of the side measures \dfrac{9}{4} cm. find the third side.



___________________________________



\large{\sf{\underline {\underline {Answer}}}}



\large{\sf \dfrac{25}{4}}



____________________________________



\huge \pink{ \mid \underline{ \overline{ \sf Brainly \: Solution : }} \mid}



 \sf Let \: the \: third \: side \: be \: x. \\ \\ \because \sf x + \frac{9}{4} + \frac{9}{4} = \frac{4 3 }{4} \\ \\ \to \sf x + \frac{18}{4} = \frac{43}{4} \\ \\ \sf \to x = \frac{43}{4} - \frac{18}{4} \\ \\ \sf \to x = \frac{25}{4}



 \huge \orange{ \boxed{ \boxed{ \sf{ \therefore x = \dfrac{25}{4}}}}}



✔✔ Hence, it is solved ✅✅.



\huge \blue{ \boxed{ \boxed{ \mathscr{THANKS}}}}
Answered by Anonymous
93

Question:

The perimeter of an isosceles triangle is \dfrac{43}{4} cm. If one of the side measures \dfrac{9}{4} cm. find the third side.

Answer:

 Third \: side \: of \: triangle = \frac{25}{4}

Step by step solution:

An \: isosceles \: triangle \: is \: a \: triangle \\ in \: which \: it \: has \: 2 \: similar \: sides \\ and one \: different \: side. \\ \\ </p><p></p><p>According \: to \: the \: question \: \\ perimeter \: of \: the \: isosceles \: triangle \\ is \: \frac{43}{4} cm .\\ \\ </p><p></p><p>It's \: one \: of \: the \: side \: measures \\ \frac{9}{4} cm. \: Then \: we can \: conclude \: that \\ one \: more \: side \: is \: same \: as \: \frac{9}{4} cm. \\ As, \: we \: need \: to \: find \: third \: side. \\ \\ </p><p></p><p>Let \: the \: third \: side \: be \: 'x'. \\ \\ </p><p></p><p>So, \\ \\ </p><p></p><p>=&gt; The \: sum \: of \: all \: three \: side = \\ perimeter \: of \: the \: isosceles \: triangle \: \\ \\ </p><p></p><p>=&gt; \frac{9}{4} + \frac{9}{4} + x = \frac{43}{4} \\ \\ = &gt; \frac{18}{4} + x = \frac{43}{4} \\ \\ = &gt; x = \frac{43}{4} - \frac{9}{4} \\ \\ = &gt; x = \frac{43 - 18}{4} \\ \\ = &gt; x = \frac{25}{4} \\ \\ </p><p></p><p>Therefore, \: third \: side \: of \: triangle = \frac{25}{4}

Similar questions