Math, asked by jesweeta2, 10 months ago

The perimeter of rectangle is 40cm .the length of the rectangle is more than double its breadth by 2 finds the length and breadth ​

Answers

Answered by SHREYASmaths
8

Answer:

Step-by-step explanation:

Length = 14 cm,

Breadth (b) = 6 cm

Step-by-step explanation:

Dimensions of the rectangle:

Let breadth = b cm

Length (l) = 2b+2 [given]

Now ,

Perimeter (P) = 40 cm

/* given*/

2(l+b)=40

=> 2(2b+2+b) = 40

=> 2(3b+2)=40

Divide both sides by 2, we get

=> 3b+2 = 20

=> 3b = 20-2

=> 3b = 18

Divide each term by 3, we get

=> b = 6

Therefore,

Breadth (b) = 6 cm

Length (l) = 2b+2

= 2×6+2

= 12+2

= 14

Please give

Answered by Anonymous
7

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The breadth of the rectangle = 6 Cm
  • The length of the rectangle = 14 Cm

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The perimeter of rectangle is 40cm.
  • The length of the rectangle is more than double its breadth by 2

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The breadth of the rectangle = ?
  • The length of the rectangle = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\pink{\:\:\: Diagram:-\:\:\:}}

\setlength{\unitlength}{2cm}\begin{picture}(16,4)\thicklines\put(8,3){\circle*{0.1}}\put(7.8,3){\large{D}}\put(7.2,2){\mathsf{\large{?cm}}}\put(8,1){\circle*{0.1}}\put(7.8,1){\large{A}}\put(9.3,0.8){\mathsf{\large{?cm}}}\put(11.1,1){\large{B}}\put(8,1){\line(1,0){3}}\put(11,1,){\circle*{0.1}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11,3){\circle*{0.1}}\put(11.1,3){\large{C}}\end{picture}

Let the breadth of the rectangle = y

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • Length = 2y + 2

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Perimeter\:of\:a\: rectangle = 2 \times (Length + Breadth) }\\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {Perimeter \:of\:a\: rectangle = 2[(2y + 2) + (y)]} \\\\

\dashrightarrow \sf {40 = 2 \times (3y + 2) }\\\\

\dashrightarrow \sf {40 = 6y + 4} \\\\

\dashrightarrow \sf {40 - 4 = 60}\\\\

\dashrightarrow \sf {y = \dfrac{\cancel{36}}{\cancel{6}}\:} \\\\

\dashrightarrow \sf {y = 6} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

The breadth of the rectangle = y

The breadth of the rectangle = 6 Cm

\sf\underline{\green{\:\:\: And:-\:\:\:}}

The length of the rectangle = 2y + 2

The length of the rectangle = 2 × 6 + 2

The length of the rectangle = 12 + 2

The length of the rectangle = 14 Cm

\rule{200}{2}

Similar questions