Math, asked by biniroychacko9854, 9 months ago

The perimeter of rectangle is 40cm the length of the rectangle is more than double its breadth by 2 by using x and y

Answers

Answered by thinkologicalfacts79
0

Answer:

By looking at the above mentioned text it is clear and can be said that ,

Perimeter of the rectangle = 40cm

Breadth of the rectangle    = x

Length of the rectangle      =2x+2

So , the length and breadth of the rectangle are:

perimeter of rectangle=2(l +b)

Therefore,

40cm=2[ (2x+2) + x ]

40cm=2[3x+2}

40cm=6x+4

40-4=6x             [Transposing 4 from RHS to LHS]

36=6x

36/6=x

6=x

Now ,

length = 2x+2

            =2(6)+2

            =12+2

length   =14cm

Breadth=x

breath = 6cm

The length of the  rectangle is 14 cm and thr breadth of the rectangle is 6 cm

HOPE YOU LIKED MY ANSWER AND IF YOU DID ,DON'T MARK MY ANSWER AS THE BRAINLIEST , JUST DO ME A FAVOR BY SUBSCRIBING TO MY YOUTUBE CHANNEL WHICH IS :

THINK-O-LOGICAL FACTS

Answered by Anonymous
1

Step-by-step explanation:

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

The breadth of the rectangle = 6 Cm

The length of the rectangle = 14 Cm

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

The perimeter of rectangle is 40cm.

The length of the rectangle is more than double its breadth by 2

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

The breadth of the rectangle = ?

The length of the rectangle = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\pink{\:\:\: Diagram:-\:\:\:}}

\setlength{\unitlength}{2cm}\begin{picture}(16,4)\thicklines\put(8,3){\circle*{0.1}}\put(7.8,3){\large{D}}\put(7.2,2){\mathsf{\large{?cm}}}\put(8,1){\circle*{0.1}}\put(7.8,1){\large{A}}\put(9.3,0.8){\mathsf{\large{?cm}}}\put(11.1,1){\large{B}}\put(8,1){\line(1,0){3}}\put(11,1,){\circle*{0.1}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11,3){\circle*{0.1}}\put(11.1,3){\large{C}}\end{picture}

Let the breadth of the rectangle = y

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

Length = 2y + 2

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Perimeter\:of\:a\: rectangle = 2 \times (Length + Breadth) }\\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {Perimeter \:of\:a\: rectangle = 2[(2y + 2) + (y)]} \\\\

\dashrightarrow \sf {40 = 2 \times (3y + 2) }\\\\

\dashrightarrow \sf {40 = 6y + 4} \\\\

\dashrightarrow \sf {40 - 4 = 60}\\\\

\dashrightarrow \sf {y = \dfrac{\cancel{36}}{\cancel{6}}\:} \\\\

\dashrightarrow \sf {y = 6} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

The breadth of the rectangle = y

The breadth of the rectangle = 6 Cm

\sf\underline{\green{\:\:\: And:-\:\:\:}}

The length of the rectangle = 2y + 2

The length of the rectangle = 2 × 6 + 2

The length of the rectangle = 12 + 2

The length of the rectangle = 14 Cm

\rule{200}{2}

Similar questions