Math, asked by riddhiAprish, 1 year ago

the perimeter of the ends of a frustum of a right circular cone is 44cm & 33cm.If the height of the frustum is 16cm,find is volume & total surface area.

Answers

Answered by santy2
31
see the attached file for solution. Thanks
Attachments:
Answered by wifilethbridge
14

Answer:

The volume and total surface area of frustum are  1899.33 cm^3 and 860.298 cm^2 respectively.

Step-by-step explanation:

Circumference of one end of frustum = 2 \pi R

So,2 \pi R=44

2 \times \frac{22}{7} \times R = 44

R = \frac{44 \times 7 }{2 \times 22}

R = 7

Circumference of other end of frustum = 2 \pi r

So,2 \pi r=33

2 \times \frac{22}{7} \times r= 33

r = \frac{33 \times 7 }{2 \times 22}

r = 5.25

Height of frustum = 16 cm

Volume of frustum = \frac{1}{3} \pi h (R^2+r^2+Rr)

                               = \frac{1}{3} \times \frac{22}{7} \times 16(7^2+5.25^2+7 \times 5.25)

                               = 1899.33 cm^3

Total surface area = \pi (r+R)\sqrt{(R-r)^2+h^2}+\pi r^2 +\pi R^2

= \frac{22}{7} \times (5.25+7)\sqrt{(75.25)^2+16^2}+\frac{22}{7} \times 5.25^2 +\frac{22}{7} \times 7^2

                              = 860.298 cm^2

Hence the volume and total surface area of frustum are  1899.33 cm^3 and 860.298 cm^2 respectively.

Similar questions