Math, asked by indhuradithya3735, 11 months ago

The perimeter of two similar triangles are 12cm and 72cm.If the area of smaller triangle is 6cm sqare. Find the area of bigger triangle

Answers

Answered by Brâiñlynêha
21

\huge\mathbb{SOLUTION:-}

\bf{Given:-}\begin{cases}\sf{Perimeter\:of\: similar\: triangle}\\ \sf{12cm\:and 72cm}\\ \sf{Area:-}\\ \sf{ 6cm{}^{2}and \:?}\end{cases}

We have to find the Area of bigger triangle

Now we know that :-

\boxed{\sf{\frac{Area\:of\:smaller\triangle}{Area\:of\:larger\triangle}=\frac{(Perimeter\:of\: smaller\triangle){}^{2}}{(Perimeter\:of\: larger\triangle){}^{2}}}}}

So

\bf\underline{\red{According\:To\: Question:-}}

\sf:\implies Put\:the\:value\:which \:is\: given\\ \\ \sf:\implies \dfrac{6cm{}^{2}}{x}=\dfrac{12\times 12}{72\times 72}\\ \\ \sf:\implies Now \:cross\: multiplication\\ \\ \sf:\implies 6\times 72\times =12\times 12\times x\\ \\ \sf:\implies \dfrac{6\times\cancel{72}\times \cancel{72}}{\cancel{12}\times \cancel{12}}=x\\ \\ \sf:\implies 6\times 6\times 6=x\\ \\ \sf:\implies x=216cm{}^{2}

\boxed{\sf{\blue{Area\:of\: bigger\triangle=216cm{}^{2}}}}

Similar questions