Physics, asked by ifrahxyz, 1 year ago

The period of a pendulum depends upon the length of the pendulum (l) and the acceleration due to gravity (g). Obtain the expressions for the time period of the pendulum

Answers

Answered by shadowsabers03
15

Let the time period of the pendulum depends upon length of the string \sf{l} and acceleration due to gravity \sf{g} as,

\longrightarrow\sf{T\propto l^a\,g^b\quad\quad\dots(1)}

Taking dimensions of each term,

\longrightarrow\sf{[T]=[l]^a\,[g]^b}

\longrightarrow\sf{T=L^a\,(LT^{-2})^b}

\longrightarrow\sf{L^0\,T^1=L^{a+b}\,T^{-2b}}

On equating corresponding powers,

\longrightarrow\sf{-2b=1}

\longrightarrow\sf{b=-\dfrac{1}{2}}

And,

\longrightarrow\sf{a+b=0}

\longrightarrow\sf{a-\dfrac{1}{2}=0}

\longrightarrow\sf{a=\dfrac{1}{2}}

Hence (1) becomes,

\longrightarrow\sf{T\propto l^{\frac{1}{2}}\,g^{-\frac{1}{2}}}

\longrightarrow\sf{\underline{\underline{T\propto\sqrt{\dfrac{l}{g}}}}}

Let \sf{k} be the proportionality constant. Then,

\longrightarrow\sf{\underline{\underline{T=k\sqrt{\dfrac{l}{g}}}}}

Practically, \sf{k=2\pi.} Hence,

\longrightarrow\sf{\underline{\underline{T=2\pi\sqrt{\dfrac{l}{g}}}}}

Answered by taetae398
0

Answer:

hey amii

how are you?

.

.

.

.

.

Similar questions