the perpendicular from D on the side EF of
trigleDEF intersects Ef at N such that NF =3EN.
Prove that :-2(DF²-DE²) = EF²
Attachments:
Answers
Answered by
6
Step-by-step explanation:
GIVEN:
NF + EN = EF
3EN + EN = EF
4EN = EF
PYTHAGORAS THEOREM:
DF^2 = DN^2 + NF^2
DE^2 = DN^2 + NE^2
DF^2 -DE^2 = NF^ - NE^2
= (NF + NE)*(NF - NE)
= (EF)*(2EN)
2*(DF^2 -DE^2) = EF*4EN
Therefore,
2*(DF² -DE ²) = EF²
Similar questions