Math, asked by faizbolch07, 5 months ago

The point of concurrence of the lines X/3+y/4=1, X/4+y/3=1, X=y is​

Answers

Answered by MaheswariS
9

\textbf{Given:}

\textsf{Lines are}

\mathsf{\dfrac{x}{3}+\dfrac{y}{4}=1,\;\dfrac{x}{4}+\dfrac{y}{3}=1,\;x=y}

\textbf{To find:}

\textsf{The point of concurrece of the given lines}

\textbf{Solution:}

\textsf{The point of concurrence of the given lines is obtained by}

\textsf{solving the equations}

\mathsf{\dfrac{x}{3}+\dfrac{y}{4}=1}.......(1)

\mathsf{\dfrac{x}{4}+\dfrac{y}{3}=1}......(2)

\mathsf{x=y}......(3)

\textsf{Using (3) in (1)}

\mathsf{\dfrac{y}{3}+\dfrac{y}{4}=1}

\mathsf{\dfrac{4y+3y}{12}=1}

\mathsf{\dfrac{7y}{12}=1}

\implies\mathsf{y=\dfrac{12}{7}}

\mathsf{(3)\implies\;x=\dfrac{12}{7}}

\textsf{Similarly, by solving (2) and (3) we get}

\mathsf{x=\dfrac{12}{7}\;\;and\;\;y=\dfrac{12}{7}}

\therefore\mathsf{The\;point\;of\;concurrence \;is\;\left(\dfrac{12}{7},\dfrac{12}{7}\right)}

\textbf{Find more:}

Find value of k if the lines 3x-4y-13=0, 8x-11y-33=0, 2x-3y+k=0 are concurrent

https://brainly.in/question/2837292

Show that the lines 2x+y-3=0, 3x+2y-2=0, 2x-3y-23=0 are concurrent.Also find the point of concurrency.​

https://brainly.in/question/11502159

Answered by khushi5252
1

HAPPY TO HELP! HERE TO HELP!

Attachments:
Similar questions