Math, asked by kotanirmala56, 2 months ago

The point which divides the lines segment joining the points (7, -6) and (3, 4) in ratio 1 : 2 internally

lies in the​

Answers

Answered by Thatsomeone
9

 \tt The\: point\: dividing\:line\: segment\: joining \\ \tt the\:points \: ({x}_{1},{y}_{1}) \:and\:({x}_{2},{y}_{2}) \:in\:the \\ \tt ratio\:m:n\:is\: given\:by \\ \\ \tt \boxed{\bold{\underline{\green{\tt (x,y) = (\frac{m{x}_{2} + n{x}_{1}}{m+n} ), (\frac{m{y}_{2}+n{y}_{1}}{m+n} ) }}}} \\ \\ \tt So\:the\:point\: dividing\:line\: segment \: joining \\ \tt the\:points\:(7,-6)\:and\:(3,4) \:in\:the \\ \tt ratio \: 1:2 \:is\:given\:by \\ \\ \tt \implies (x,y) = (\frac{7×2 + (3)×1}{1+2} , \frac{-6×2 + 4×1}{1+2}) \\ \\ \tt \implies (x,y) =(\frac{14+3}{3},\frac{-12+4}{3}) \\ \\ \tt \implies (x,y) = (\frac{17}{3},\frac{8}{3}) \\ \\ \tt \therefore \boxed{\bold{\underline{\red{\tt The\: required\:point\:is\:(\frac{17}{3},\frac{8}{3}) }}}}

Answered by Anonymous
2

Answer:

the required points is 17/3,8/3

Similar questions