Math, asked by raksha392004, 1 year ago

The pointe A. (1,-2), B(2, 3) c(K/2)
and D(-1, -3) are the vertices of a
parallelogram Find the value of k​

Answers

Answered by Anonymous
3

❏ Used Formula

If a straight line AB is intersected by a line at point p in the ratio m:n ,where the coordinates of P(x,y),A(x1,y1) and B(x2,y2), then;

\sf\longrightarrow x=\frac{mx_2+nx_1}{m+n}

\sf\longrightarrow y=\frac{my_2+ny_1}{m+n}

now, if m=n (i.e., midpoint) then.

\sf\longrightarrow x=\frac{x_2+x_1}{2}

\sf\longrightarrow y=\frac{y_2+y_1}{2}

❏ Solution

❰ Now we know that for a parallelogram the diagonals bisected each other .

i.e., midpoint of the both diagonals is same ❱

Here, The parallelogram is ABCD ,

And it's diagonals are AC and BD,

Let the midpoint is O

i.e., They bisect each other at point O.

Now , The midpoint of the diagonal BD.

\sf\longrightarrow (\frac{2-1}{2}\:,\:\frac{-3+3}{2})

\sf\longrightarrow (\frac{1}{2}\:,\:0)

Now , The midpoint of the diagonal AC

\sf\longrightarrow (\frac{1+k}{2}\:,\:\frac{-2+2}{2})

\sf\longrightarrow (\frac{1+k}{2}\:,\:0)

Now, comparing , ordinates.

\sf\longrightarrow \frac{1+k}{2}=\frac{1}{2}

\sf\longrightarrow 1+k=1

\sf\longrightarrow\boxed{ k=0}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions