Math, asked by jyona670, 1 month ago

The points (0,0),(0,10),(8,16) and (8,6) are joined to form a quadrilateral. Find the type of the quadrilateral

Answers

Answered by Anonymous
4

Answer:

Given :-

The points (0,0),(0,10),(8,16) and (8,6) are joined to form a quadrilateral.

To Find :-

Type of quadrilateral

Solution :-

We know that

\bf Distance =\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Let the quadrilateral be ABCD

Diagram :-

 \setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(6,1)\qbezier(1,1)(1,1)(1.6,4)\qbezier(1.6,4)(1.6,4)(6.6,4)\qbezier(6,1)(6,1)(6.6,4)\qbezier(6.6,4)(6.6,4)(1,1)\qbezier(1.6,4)(1.6,4)(6,1)\put(0.7,0.5){\sf A(0,0)}\put(6,0.5){\sf B(0,10)}\put(1.4,4.3){\sf D(8,16)}\put(6.6,4.3){\sf C(8,6)}\end{picture}

For AB

 \sf \implies \:  \sqrt{(0 -  {0)}^{2} + (10 - 0 {)}^{2}  }

 \sf \implies \sqrt{(0) {}^{2}  + {(10)}^{2}  }

 \sf \implies \:  \sqrt{100}

 \sf \implies \: 10

For BC

 \sf \implies \sqrt{(8 -  {0)}^{2} + (16 - 1 {0)}^{2}  }

 \sf \implies \:  \sqrt{(8 {)}^{2} + (6 {)}^{2}  }

 \sf \implies \:  \sqrt{64 + 36}

 \sf \implies \:  \sqrt{100}

 \sf \implies \: 10

For CD

\sf \implies \sqrt{(8 - 8 {)}^{2} + (6 - 16) {}^{2} }

\sf \implies \sqrt{(0 {)}^{2}  + ( -  {10)}^{2} }

\sf \implies \:  \sqrt{0 + 100}

\sf \implies \sqrt{100}

\sf \implies10

For DA

\sf \implies \sqrt{(8 - 0 {)}^{2}  + (6 -  {0)}^{2} }

\sf \implies \sqrt{(8) {}^{2}  + (6 {)}^{2} }

\sf \implies \sqrt{64 + 36}

\sf \implies \sqrt{100}

\sf \implies10

For AC

\sf \implies \sqrt{(8 - 0 {)}^{2} + (16 -  {0)}^{2}  }

\sf \implies \sqrt{(8 {)}^{2} + (16 {)}^{2}  }

\sf \implies \sqrt{64 + 256}

\sf \implies \sqrt{320}

\sf \implies8 \sqrt{5}

For BD

\sf \implies \sqrt{(8 -  {0)}^{2} + (6 -  {10)}^{2}  }

\sf \implies \sqrt{(8 {)}^{2}  + ( -  {4)}^{2} }

\sf \implies \sqrt{64 + 16}

\sf \implies  \sqrt{80}

\sf \implies4 \sqrt{5}

Since,

The diagonal aren't same and the sides are same. So, it's a rhombus

Similar questions