The points (1,1), (-2, 7) and (3, -3) are
1.vertices of an equilateral triangle
2.collinear
3.vertices of an isosceles triangle
4.none of these
Answers
Explanation:-
These points (1,1), (-2,7) and (3,-3) forms collinear.
you can actually see in the Attachment the given points have been plotted forms a straight segment or line.
here it is collinear because the segBC is equals to seg AB + segAC.
That means d(BC) = d(BA) + d(AC)
by using distance formula we can show that these points are collinear.
A = (1,1) = (x1, y1)
B = (-2,7) = (x2,y2)
C = (3,-3) = (x3,y3)
d(BC) = d(BA) + d(AC)
By distance formula
√((x3 - x2)² + (y3 - y2)²) = √((x2 - x1)² + (y2 - y1)²) + √((x3 - x1)² + (y3 - x1)²)
√((3-(-2))² + (-3-7)²) = √((-2-1)² + (7-1)²) + √((3-1)² + (-3-1)²)
√((5)² + (-10)²) = √((-3)² + (6)² ) + √((2)² + (-4)²)
√(25 + 100) = √(9 + 36) + √(4 + 16)
√(125) = √(45) + √(20)
5√(5) = 3√(5) + 2√(5)
5√(5) = 3√(5) + 2√(5)5√(5) = 5√(5)
In this way they are collinear.
option 2. collinear
Answer:
Option 2: Collinear
☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️