English, asked by AnuChauhan991, 6 months ago

the points P ( 4,3) Q ( -5,-1) and T ( 2,-2) are vertices of a
(a) Equilateral triangle
(b) Isosceles triangle
(c) Scalene triangle
(d) No triangle ​

Answers

Answered by Anonymous
66

\boxed{\rm{\orange{Given \longrightarrow }}}

⇢Points are P(4,3), Q(-5-1), T(2,-2)

\boxed{\rm{\red{To\:Find\longrightarrow }}}

⇢whether the given points form a triangle

\boxed{\rm{\pink{solution \longrightarrow }}}

⇢First we find the lengths $PQ,QT,PT$

PQ=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

PQ=\sqrt{(4+5)^2+(3+1)^2}

PQ=\sqrt{9^2+4^2}

PQ=\sqrt{81+16}

\bf\,PQ=\sqrt{97}

QT=\sqrt{(-5-2)^2+(-1+2)^2}

QT=\sqrt{(-7)^2+1^2}

QT=\sqrt{49+1}

\bf\,QT=\sqrt{50}

PT=\sqrt{(4-2)^2+(3+2)^2}

PT=\sqrt{2^2+5^2}

PT=\sqrt{4+25}

\bf\,PT=\sqrt{29}

\implies\bf\,PQ{\neq}QT{\neq}PT

∴The given points P,Q and T form a scalene triangle

\boxed{\textbf{Option (c) is corrct}}

Answered by Anonymous
452

\huge\star\:\:{\orange{\underline{\pink{\mathbf{Solution:-}}}}}

  • Finding the distance between the points,

(PQ)² = (-5-4)² + (-1-3)²

         = (-9)² + (-4)²

         = 81 + 16

         = 97

PQ = \sqrt{97}

Now,

(QT)² = (2+5)² + (-2+1)²

         = (7)² + (-1)²

         = 49 + 1

         = 50

QT = \sqrt{50}

And,

(PT)² = (2-4)² + (-2-3)²

         = (-2)² + (-5)²

         = 4 + 25

         = 29

PT = \sqrt{29}

So,

We can conclude that all side are different

PQ ≠ QT ≠ PT

Hence,

It is a Scalene triangle

Option c) Scalene triangle is correct

Similar questions