Math, asked by shampa74, 1 year ago

The polynomial p(x)=x^4-2x^3+3x^2-ax+3a-7 when divided by(x+1) the
remainder 19. Find the values of a. Also find the remainder when p(x) divided
by x+2.​

Answers

Answered by Prakhar2908
0

Answer:

1/4 & 1/4

Step-by-step explanation:

I have taken a as p in the answer.

Pls refer to the attachment for the detailed solution.

Attachments:
Answered by VarshaS553
0

Answer:

p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7

Divisor = x + 1

x + 1 = 0

x = -1

So, substituting the value of x = – 1 in p(x),

we get,

p(-1) = (-1)4 – 2(-1)3 + 3(-1)2 – a(-1) + 3a – 7.

19 = 1 + 2 + 3 + a + 3a – 7

19 = 6 – 7 + 4a

4a – 1 = 19

4a = 20

a = 5

Since, a = 5.

We get the polynomial,

p(x) = x4 – 2x3 + 3x2 – (5)x + 3(5) – 7

p(x) = x4 – 2x3 + 3x2 – 5x + 15 – 7

p(x) = x4 – 2x3 + 3x2 – 5x + 8

As per the question,

When the polynomial obtained is divided by (x + 2),

We get, x + 2 = 0

m

x = – 2

So, substituting the value of x = – 2 in p(x), we get,

p(-2) = (-2)4 – 2(-2)3 + 3(-2)2 – 5(-2) + 8

⇒ p(-2) = 16 + 16 + 12 + 10 + 8

⇒ p(-2) = 62 Therefore, the remainder = 62.

Similar questions