Physics, asked by Devansy2479, 1 month ago

The population ratio of the two states in he-ne laser that produces light of wavelength 6000 A at 300 K is

Answers

Answered by mukherjeerumpa75
1

Answer:

Population ratio is \frac{N_{2} }{N_{1}} =5.94 \times 10^{34}

N

1

N

2

=5.94×10

34

.

Given:

\lambdaλ = 6000 A = 6 ×10^{-7}10

−7

m

T = 300 K

To find:

Ratio of population = \frac{N_{2} }{N_{1} }

N

1

N

2

= ?

Formula used:

\frac{N_{2} }{N_{1} }

N

1

N

2

= e^{\frac{\Delta E}{kT} }e

kT

ΔE

\Delta E = \frac{hc}{\lambda}ΔE=

λ

hc

Solution:

Energy is given by,

\Delta E = \frac{hc}{\lambda}ΔE=

λ

hc

\Delta E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{6 \times 10^{-7} }ΔE=

6×10

−7

6.63×10

−34

×3×10

8

\Delta E = 3.315 \times 10^{-19}ΔE=3.315×10

−19

\DeltaE = \frac{3.315 \times 10^{-19}}{1.38 \times 10^{-23} \times 300 }\DeltaE=

1.38×10

−23

×300

3.315×10

−19

\DeltaE = 80.07\DeltaE=80.07

Ratio of population = 1\frac{N_{2} }{N_{1} }1

N

1

N

2

= e^{\frac{\Delta E}{kT} }e

kT

ΔE

\frac{N_{2} }{N_{1}} =5.94 \times 10^{34}

N

1

N

2

=5.94×10

34

Population ratio is \frac{N_{2} }{N_{1}} =5.94 \times 10^{34}

N

1

N

2

=5.94×10

34

.

Similar questions