Physics, asked by Anonymous, 1 year ago

The position vector of a particle is given by:
 \sf{\hat{r} = 0.6 \hat{i}  \:  +  \: b \hat{j} \:  +  \: 0.8 \hat{k}}
Find the value of "b"​

Answers

Answered by BrainlyConqueror0901
22

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore b=0}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{given : } \\  \implies  \hat{r} = 0.6 \:\hat{i} + b \:\hat{j} + 0.8 \:\hat{k} \\  \\ \underline \bold{to \: find : } \\  \implies b = ?

• According to given question :

 \implies  \hat{r} = 0.6 \:\hat{i}  + b \:\hat{j} + 0.8 \:\hat{j} \\  \\  \implies  | \hat{r}|  =  |0.6 \:\hat{i} + b\: \hat{j} + 0.8 \:\hat{j}|  \\   \\ \bold{ | \hat{r}| = 1} \\  \\  \implies  {1}^{2} =({0.6})^{2}  +  {b}^{2}  +( 0.8)^{2}  \\  \\  \implies 0.36 +  {b}^{2}  + 0.64 = 1 \\  \\  \implies  {b}^{2}  + 1 = 1 \\  \\  \implies  {b}^{2}  =  \cancel1 -  \cancel1 \\  \\  \implies  {b}^{2}  = 0 \\  \\   \bold{\implies b = 0}

Answered by ShivamKashyap08
21

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

\large{ \hat{r} = 0.6 \hat{i} + b \hat{j} + 0.8 \hat{k}}

\huge{\bold{\underline{Explanation:-}}}

As here { \hat{r}} is given and it is a unit vector .

Taking Magnitude of unit vector gives a value of 1.

Glance on unit vector:-

A unit vector is a vector which has a magnitude of 1.

Also,

{\hat{i}, \hat{j} , \hat{k}} are unit vectors along x, y , and z axis.

Now,

\large{ \hat{r} = 0.6 \hat{i} + b \hat{j} + 0.8 \hat{k}}

Taking Magnitude,

\large{ \implies| \hat{r} | = \sqrt{(0.6)^2 + (b)^2 + (0.8)^2}}

Unit vector magnitude = 1.

\large{ \implies 1 = \sqrt{0.36 + b^2 + 0.64}}

\large{ \implies 1 = \sqrt{1.00 + b^2}}

Squaring on both sides,

\large{ \implies(1)^2 = ( \sqrt{1.00 + b^2})}

It becomes,

\large{ \implies 1 = 1 + b^2}

\large{ \implies b^2 = 1 - 1}

\large{ \implies b^2 = 0}

\huge{\boxed{\boxed{b = 0}}}

So,the value of b is "0".

Similar questions