Physics, asked by rohitkumarg184, 1 year ago

The position vector of two particles of mass 4.0 kg and 2.0 kg are, respectively,
r i j kˆ 2
ˆ ˆ 3
2
1 = t + t + t
r
and r i ( )j kˆ 4
ˆ 1
ˆ 3
2
2 = + t − + t
r
where t is in seconds and the position
in metres. Determine the position vector of the centre of mass of the system, the
velocity of the cm and the net force acting on the system

Answers

Answered by kvnmurty
0

m1 = 4.0 kg         m2 = 2.0 kg
Given   vector  r1 =  3 t i + t  j + 2 t² k   m
             vector r2 = 3 i + (t² -1) j + 4 t k   meters

Position vector of Center of mass =

 r = (m1 r1  + m2 r2 )/ (m1+m2)
 r = [ (4* 3t + 2*3) i + (4* t+ 2* (t²-1)) j + (4*2t² + 2 * 4 t) k ]/(4+2)  meters
  = [ (12t +6) i + (2t² + 4t -2) j + (8t² + 8 t) k ] /6  m

Velocity of cm = v = dr/dt = 2 i + (2t+2)/3 j + (8 t + 4)/3 k    m/s
    magnitude = √(36+4t²+4+8t+64t²+16+16t)  /3  m/s
                      = √(17 t²+ 6t + 10) * 2/3  m/s

Acceleration of cm = a = dv/dt = 2/3 j + 8/3 k   m/s^2
     
Net force acting on the system =  (m1+m2) * a
          = 4 j + 16 k
    Magnitude = 4√17 Newtons

 


kvnmurty: click on red heart thanks above pls
Similar questions