Math, asked by techsmithtechnology, 9 days ago

The position vector of vertices of Triangle ABC are i , j, and k then find the position vector of its orthocenter. ​

Answers

Answered by velpulaaneesh123
2

Answer:

\frac{1}{3} (\hat{i}+\hat{j}+\hat{k})

Step-by-step explanation:

❒ We have, the position vectors of the vertices of a triangle ABC are \hat{i} \hat{j} \hat{k}

❒ Let O be the fixed point

\hat{i} = position\:\:vector\:\: of\: A = \vec{OA}

\hat{j} = position \: \:vector \: \: of \: \: B = \vec{OB}

\hat{k} = position\:\: vector\:\: of\:\: C = \vec{OC}

❒ Let AD be the median of the triangle ABC.

❒ Since, D is the median point of BC.

\bold{Position\:of\:vector\:D = vector\:OD=} \frac{\vec{OB}\:+\:\vec{OC}}{2}

❒ Now, position vector of G

\hookrightarrow \frac{2(OD)+1(OA)}{3}

\hookrightarrow \frac{2(\frac{OB+OC}{2})+OA }{3}

\hookrightarrow \frac{\vec{OA} +\vec{OB}+\vec{OC}}{3}

So,

\hookrightarrow \frac{\hat{i}\:+\:\hat{j}\:+\:\hat{k}}{3}

Hence, the position vector of the ortho centre is  \frac{1}{3} (\hat{i}+\hat{j}+\hat{k})

Similar questions