The probability of guessing the correct answer to a certain question is x/3. If the probability of not guessing the correct answer is 5x/3, then find the value of x.
Answers
Answered by
81
Hey mate, here is your answer-:)
__________________________
![P(E) + P(E') = 1 \\ \frac{x}{3} + \frac{5x}{3} = 1 \\ \\ \: \frac{x + 5x}{3} = 1 \\ \\ \: \: \: \: \: \: \: \: \: \frac{6x}{3} = 1 \\ \\ \: \: \: \: \: \: \: \: \: \: 2x = 1 \\ \: \: \: \: \: \: \: \: \: \: \: x = \frac{1}{2} P(E) + P(E') = 1 \\ \frac{x}{3} + \frac{5x}{3} = 1 \\ \\ \: \frac{x + 5x}{3} = 1 \\ \\ \: \: \: \: \: \: \: \: \: \frac{6x}{3} = 1 \\ \\ \: \: \: \: \: \: \: \: \: \: 2x = 1 \\ \: \: \: \: \: \: \: \: \: \: \: x = \frac{1}{2}](https://tex.z-dn.net/?f=+P%28E%29+%2B+P%28E%27%29+%3D+1+%5C%5C+%5Cfrac%7Bx%7D%7B3%7D+%2B+%5Cfrac%7B5x%7D%7B3%7D+%3D+1+%5C%5C+%5C%5C+%5C%3A+%5Cfrac%7Bx+%2B+5x%7D%7B3%7D+%3D+1+%5C%5C+%5C%5C+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5Cfrac%7B6x%7D%7B3%7D+%3D+1+%5C%5C+%5C%5C+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+2x+%3D+1+%5C%5C+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+x+%3D+%5Cfrac%7B1%7D%7B2%7D+)
___________________________
HOPE it helps to you!!!
__________________________
___________________________
HOPE it helps to you!!!
Answered by
24
Ahoy! Refer to attachment
Attachments:
![](https://hi-static.z-dn.net/files/d7e/14072ab24ceb7e179cd05417a78360a0.jpg)
abhilipsa5:
hi
Similar questions