Math, asked by sonalpokhrel, 3 months ago

the product of two consecutive positive integers is 17 more than 5 times the sum find the numbers​

Answers

Answered by Aloneboi26
0

Step-by-step explanation:

Step-by-step explanation:

Step-by-step explanation:

Step-by-step explanation:

Step-by-step explanation:

Given :

Area of Trapezium is 384 cm² .

Parallel sides of trapezium are in the ratio 3:5 .

Perpendicular distance / Height is 12 cm .

To Find :

Length of each parallel sides .

Solution :

\longmapsto\tt{Let\:one\:parallel\:side\:be=3x}

\longmapsto\tt{Let\:other\:parallel\:side\:be=5x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{384=\dfrac{1}{{\cancel{2}}}\times{(3x+5x)}\times{{\cancel{12}}}}

\longmapsto\tt{384=(3x+5x)\times{6}}

\longmapsto\tt{384=18x+30x}

\longmapsto\tt{384=48\:x}

\longmapsto\tt{x=\cancel\dfrac{384}{48}}

\longmapsto\tt\bf{x=8}

Value of x is 8 .

Therefore :

\longmapsto\tt{Length\:of\:one\:parallel\:side=3(8)}

\longmapsto\tt\bf{24\:cm}

\longmapsto\tt{Length\:of\:other\:parallel\:side=5(8)}

\longmapsto\tt\bf{40\:cm}

So , The Parallel sides of Trapezium are 24 cm and 40 cm .


bijendar1025: you are you are my friend
Answered by vaibhavsanaya589
0

Step-by-step explanation:

\huge{\green{\underline{\underline{\tt{Solution:}}}}}

Given,

☞ x = -1

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}

→\;{\sf{P(-1) = -5-4(+1)+3}}

→\;{\sf{P(-1) = -5-4+3}}

→\;{\sf{P(-1) = -9+3}}

➝\;\red{\bf{P(-1) = -6}}

Hope It Helps You ✌️

\huge\underbrace{\green{\tt{\diamond\; Solution:}}}

Let

Total Pocket Money be 'x'

Now, Savings = 30% of x

→\;\Large{\frac{30}{100}×x}

→\;\Large{\frac{30x}{100}}

Given,

Amount Spend = Rs. 280.

→\;\Large{\sf{x - \frac{30x}{100} = 280}}

LCM is '100'

→\;\Large{\sf{\frac{100x-30x}{100} = 280}}

→\;{\sf{70x = 280×100}}

→\;\Large{\sf{x = \cancel{\frac{28000}{70}}}}

→\;\boxed{\sf{x = 400}}

.:. Total Pocket Money is \fbox\red{Rs.400}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\huge\underbrace{\green{\tt{\diamond\; SoluTion:}}}

→\;{\sf{2x² = 128}}

→\;{\sf{x² = \Large\frac{128}{2}}}

→\;{\sf{x = \sqrt{64}}}

→\;{\sf{x = \sqrt{8²}}}

☞\;\Large{\red{\bf{x = 8}}}

\purple{\bf{MrMonarque}}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\red{\sf{MrMonarque}}

Hope It Helps You ✌️\huge{\green{\underline{\underline{\tt{Solution:}}}}}

Given,

☞ x = -1

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}

→\;{\sf{P(-1) = -5-4(+1)+3}}

→\;{\sf{P(-1) = -5-4+3}}

→\;{\sf{P(-1) = -9+3}}

➝\;\red{\bf{P(-1) = -6}}

Hope It Helps You ✌️

\huge\underbrace{\green{\tt{\diamond\; Solution:}}}

Let

Total Pocket Money be 'x'

Now, Savings = 30% of x

→\;\Large{\frac{30}{100}×x}

→\;\Large{\frac{30x}{100}}

Given,

Amount Spend = Rs. 280.

→\;\Large{\sf{x - \frac{30x}{100} = 280}}

LCM is '100'

→\;\Large{\sf{\frac{100x-30x}{100} = 280}}

→\;{\sf{70x = 280×100}}

→\;\Large{\sf{x = \cancel{\frac{28000}{70}}}}

→\;\boxed{\sf{x = 400}}

.:. Total Pocket Money is \fbox\red{Rs.400}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\huge\underbrace{\green{\tt{\diamond\; SoluTion:}}}

→\;{\sf{2x² = 128}}

→\;{\sf{x² = \Large\frac{128}{2}}}

→\;{\sf{x = \sqrt{64}}}

→\;{\sf{x = \sqrt{8²}}}

☞\;\Large{\red{\bf{x = 8}}}

\purple{\bf{MrMonarque}}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\red{\sf{MrMonarque}}

Hope It Helps You ✌️

Let \sf p \geq 5 be a prime number.... Prove that there exists an integer \sf a with \sf 1 \leq a \leq p - 2 such that neither \sf {a}^{(p - 1)} - 1 nor [tex

\huge\star\underline\mathtt\green{Question:-}(◍•ᴗ•◍)❤ \tt\pink{✰\:Define} \sf 1. \:Acid \sf 2.... \:Base \sf 3. \:Salt No Spam‼️

Similar questions