Math, asked by pratik222, 1 year ago

The pth term of an AP is 1/q and qth term is 1/p . The sum of the pqth term is what​

Answers

Answered by Anonymous
5

Solution:

Given:

  • pth term of an AP = 1/q
  • qth term of an AP = 1/p

To Find:

  • Sum of the p and qth term.

Now, let first term = a and common difference = d.

Now, according to question,

\implies \sf a_{p}=\dfrac{1}{q}=a+(p-1)d=\dfrac{1}{q}\;\;\;\;........(1)\\ \\ \\ \implies \sf a_{q}=\dfrac{1}{p}=a+(q-1)d=\dfrac{1}{p}\;\;\;\;........(2)\\ \\ \\ \underline{\bf Now, \;equation\;(1)-equation\;(2)}\\ \\ \\ \implies \sf (p-1)d-(q-1)d=\dfrac{1}{q} -\dfrac{1}{p}\\ \\ \\ \implies \sf d[p-1-q+1]=\dfrac{p-q}{pq}\\ \\ \\ \implies d=\dfrac{1}{qp}

\underline{\bf Now,\;put\;the\;value\;of\;d\;in\;equation\;(1)}\\ \\ \\ \implies \sf a+(p-1)\Bigg(\dfrac{1}{pq}\Bigg)=\dfrac{1}{q}\\ \\ \\ \implies \sf a+\Bigg(\dfrac{p}{pq}-\dfrac{1}{pq}\Bigg)=1\\ \\ \\ \implies \sf a=\dfrac{1}{pq}\\ \\ \\ \underline{\bf Now,\;by\;S_{n}\;formula,}  \\ \\ \\ \implies \sf S_{n}=\dfrac{n}{2}[2a+(n-1)d]\\ \\ \\ \implies S_{pq}=\dfrac{pq}{2}\Bigg[\dfrac{2}{pq}+(pq-1)\Bigg(\dfrac{1}{pq}\Bigg)\Bigg]

\implies \sf S_{pq}=\dfrac{pq}{2}\Bigg[\dfrac{2}{pq}+\dfrac{pq}{pq}-\dfrac{1}{pq}\Bigg]\\ \\ \\ \implies \sf S_{pq}=\dfrac{pq}{2}\Bigg[\dfrac{1}{pq}+1\Bigg]\\ \\ \\ \implies \sf S_{pq}=\dfrac{pq}{2}\Bigg[\dfrac{1+pq}{pq}\Bigg]\\ \\ \\ \implies {\boxed{\sf S_{pq}=\dfrac{1}{2}(1+pq)}}

Answered by Anonymous
0

plz refer to this attachment

Attachments:
Similar questions