Math, asked by ramansandhursm6104, 9 months ago

The quadratic equation those real coefficients whose one root is 5 + root 5 by 2 is

Answers

Answered by pulakmath007
23

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

In an equation with real coefficients irrational roots occur in conjugate pairs

More precisely, if a +b is a root of a quadratic equation then a - b is another root of the equation

GIVEN

 \sf{One  \: root  \: of  \: a \:  quadratic \:  equation  \: with  \: real}

 \displaystyle \:  \sf{ coefficients\:  \: is \:  \:  \:  \:  \: 5 +  \frac{ \sqrt{5} }{2} }

TO DETERMINE

The quadratic equation

CALCULATION

 \sf{ Since\: One  \: root  \: of  \: a \:  quadratic \:  equation  \: with  \: real}

 \displaystyle \:  \sf{ coefficients\:  \: is \:  \:  \:  \:  \: 5 +  \frac{ \sqrt{5} }{2} }

 \displaystyle \:  \sf{   \:  \: 5  -  \frac{ \sqrt{5} }{2} }

 \displaystyle \:  \sf{ \therefore \:   Sum  \: of  \: the \:  roots\:   =5   +  \frac{ \sqrt{5} }{2}  +  \: 5  -  \frac{ \sqrt{5} }{2} = 10 }

 \displaystyle \:  \sf{ \therefore \:   Product  \: of  \: the \:  roots\:  }

 \displaystyle \:  \sf{  = \bigg(5   +  \frac{ \sqrt{5} }{2}  \bigg) \bigg(5  -  \frac{ \sqrt{5} }{2}  \bigg)  }

 \displaystyle \:  \sf{  = {(5)}^{2}  -  { \bigg(\frac{ \sqrt{5} }{2} \bigg)}^{2}  }

 \displaystyle \:  \sf{  = 25 -  \frac{5}{4} }

 \displaystyle \:  \sf{  =  \frac{95}{4} }

So the required Quadratic Equation is

 \sf{ {x}^{2} - (sum \: of \: the \: zeroes)x + (product \: of \: the \: zeroes ) = 0}

 \displaystyle \:  \sf{   {x}^{2}  - 10x +  \frac{95}{4} = 0 }

Similar questions