Math, asked by samiyachugh05, 8 months ago

The quadratic polynomial where α=5+2√6 and αβ=1 is​

Answers

Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

The quadratic polynomial whose zeroes are given by

 \sf{  \alpha  = 5 + 2 \sqrt{6}   \:  \:  \:  \: and \:  \:  \:  \: \alpha  \beta  = 1\: }

EVALUATION

Here

 \sf{  \alpha  = 5 + 2 \sqrt{6} \: }

Also

 \sf{ \alpha  \beta  = 1 \: }

 \implies \displaystyle \sf{ \beta  =  \frac{1}{ \alpha } }

 \implies \displaystyle \sf{ \beta  =  \frac{1}{5 + 2 \sqrt{6}  } }

 \implies \displaystyle \sf{ \beta  =  \frac{5 - 2 \sqrt{6} }{(5 + 2 \sqrt{6})(5 - 2 \sqrt{6}  ) } }

 \implies \displaystyle \sf{ \beta  =  \frac{5 - 2 \sqrt{6} }{ {5}^{2} -  {(2 \sqrt{6} )}^{2}  } }

 \implies \displaystyle \sf{ \beta  =  \frac{5 - 2 \sqrt{6} }{25 - 24 } }

 \implies \displaystyle \sf{ \beta  =  \frac{5 - 2 \sqrt{6} }{1 } }

 \implies \displaystyle \sf{ \beta  = 5 - 2 \sqrt{6}  }

Therefore

 \sf{ \alpha  +  \beta     \: }

 \sf{  = 5 + 2 \sqrt{6 } + 5 - 2 \sqrt{6}   \: }

 = 10

Hence the required Quadratic polynomial is

 \sf{ {x}^{2} - ( \alpha +   \beta )x +   \alpha  \beta }

 =  \sf{ {x}^{2} - 10x + 1  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find a cubic function with the given zeros. -6, 7, -4

https://brainly.in/question/23346934

Answered by mantu9000
0

Given by question:

α, β be the roots of the quadratic polynomial.

α = 5+2\sqrt{6} and αβ = 1

We have to find the quadratic polynomial.

Solution:

We have:

αβ = 1

⇒ β = \dfrac{1}{\alpha}=\dfrac{1}{5+2\sqrt{6}}

⇒ β = \dfrac{1}{5+2\sqrt{6}}\times \dfrac{5-2\sqrt{6}}{5-2\sqrt{6}}

⇒ β = \dfrac{5-2\sqrt{6}}{5^2-(2\sqrt{6})^2}  [ ∵ a^{2} -b^{2} =(a+b)(a-b)

⇒ β = \dfrac{5-2\sqrt{6}}{25-24}

⇒ β = 5-2\sqrt{6}

∴ α + β = (5+2\sqrt{6})+( 5-2\sqrt{6}) = 10

We know that:

The quadratic polynomial is:

x^{2} -(\alpha+\beta)x+\alpha\beta

The required quadratic polynomial is:

x^{2} -10x+1

Thus, the required quadratic polynomial is equal to "x^{2} -10x+1".

Similar questions