Math, asked by akok44, 9 months ago

the quadratic polynomial whose zeroes are 5+√3 and 5-√3 is​

Answers

Answered by h8540234
1

Answer:

it is not a 0 of the polynomial and it is also not a quadratic polynomial

Answered by Anonymous
5

Answer:

\sf{The \ required \ polynomial \ is}

\sf{p(x)=x^{2}-10x+22.}

Given:

\sf{The \ zeroes \ of \ the \ polynomial \ are}

\sf{5+\sqrt3 \ and \ 5-\sqrt3.}

To find:

\sf{The \ quadratic \ polynomial.}

Solution:

\sf{Let \ \alpha=5+\sqrt3 \ and \ \beta=5-\sqrt3}

\sf{\alpha+\beta=(5+\sqrt3)+(5-\sqrt3)}

\sf{\therefore{\alpha+\beta=10...(1)}}

\sf{\alpha\beta=(5+\sqrt3)(5-\sqrt3)}

\sf{\therefore{\alpha\beta=5^{2}-\sqrt3^{2}}}

\sf{\therefore{\alpha\beta=25-3}}

\sf{\therefore{\alpha\beta=22...(2)}}

\sf{Quadratic \ polynomial \ can \ be \ written}

\sf{as}

\sf{p(x)=x^{2}-(\alpha+\beta)x+\alpha\beta}

\sf{from \ (1) \ and \ (2)}

\sf{p(x)=x^{2}-10x+22}

\sf\purple{\tt{\therefore{The \ required \ polynomial \ is}}}

\sf\purple{\tt{p(x)=x^{2}-10x+22.}}

Similar questions