Math, asked by yashasvi7659, 9 months ago

The quadratic polynomial x^2-4x+k=0 has distinct real roots

Answers

Answered by amitkumar44481
5

Question :

The quadratic polynamial x²-4x+k = 0 has distinct real roots.

AnsWer :

K<4.

Required Information :

 \blacksquare \tt \: D =  {b}^{2}  - 4ac. \\  \blacksquare \tt \: D \: \:  \:  means \: Discriminant .\\  \blacksquare\tt \: distinct \:  real \: roots  \: means \\   \:  \:  \: \tt \:  D &gt; 0.

To Find :

Value of k.

Solution :

we have quadratic Equation,

 \:  \tt {x}^{2}  - 4x + k = 0. \\ \tt where \: as \: a   = 1. \:  \: b =  - 4. \:  \:  \: c = k.

Now,

 \tt \: D =  {b}^{2}  - 4ac. \\   \:  \:  \:  \:   \tt=   { (- 4)}^{2}  - 4 \times 1 \times k. \\ \:  \:  \:  \:   \tt = 16 - 4k.

But, it have distinct roots.

  \:  \:  \:  \:  \:  \tt \: D &gt; 0. \\   \leadsto \tt{b}^{2}  - 4ac &gt; 0.

 \leadsto  \tt16 - 4k &gt; 0. \\ \leadsto  \tt16  &gt; 4k. \\ \leadsto  \tt4 &gt; k. \\  \leadsto  \tt k &lt; 4.

Therefore, the value of distinct roots of Equation be k < 4.

Similar questions