Math, asked by Agnel25, 10 months ago

The question asked by Agnel025❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️


Answer fast guys ​

Attachments:

Answers

Answered by latikamishra2004
0

Answer:

hope it helps you

pls rate it max

Attachments:
Answered by Anonymous
1

 \underline{ \ \fbox{ \mathtt{ \huge{ \purple{ \: To  \: prove  : \:  \:  \: }}}}}

 \red \star \: \:   \sf { \frac{ \sec( \theta) }{ \sin( \theta) }  -  \frac{ \sin( \theta) }{ \cos( \theta) }  }  = \sf \cot( \theta)

 \underline{ \ \fbox{ \mathtt{ \huge{ \purple{ \: Proof : \:  \:  \: }}}}}

LHS

  \sf \hookrightarrow \frac{ \sec( \theta) }{ \sin( \theta) }  -  \frac{ \sin( \theta) }{ \cos( \theta) }  \\  \\  \sf \hookrightarrow  \frac{1}{ \sin( \theta)  \times  \cos( \theta)  }  -  \frac{ \sin( \theta) }{ \cos(\theta)  } \:  \:  \:   \bigg \{ \because  \sec( \theta)  =  \frac{1}{\cos( \theta) } \bigg\} \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  Taking \:  LCM \:  ,  \: we  \: get </p><p> \\  \\    \sf \hookrightarrow \frac{ 1 -  { \sin}^{2}( \theta)  }{\sin( \theta)  \times  \cos( \theta) }  \\  \\   \sf \hookrightarrow \frac{ { \cos}^{ {2}}( \theta) }{\sin( \theta)  \times   {\cos( \theta)} } \:  \:  \:   \bigg \{ \because 1 -   { \sin}^{2} ( \theta) =  { \cos}^{2}  ( \theta)  \bigg\}  \\  \\   \sf \hookrightarrow \frac{ \cos( \theta)}{ \sin( \theta)}  \\  \\   \sf \hookrightarrow \cot( \theta)  \:  \:  \: \bigg  \{\because   \frac{ \cos( \theta)}{  \sin( \theta)} =\cot( \theta)  \bigg\}

LHS = RHS

Hence proved

Similar questions