Math, asked by ashwanirai4579, 9 months ago

The radical centre of the circle x2+y2+2x+6y=0, x2+y2-4x-2y+6=0 and x2+y2-12x+2y+30=0 is

Answers

Answered by Agastya0606
2

Given: Three equations: x^2+y^2+2x+6y=0, x^2+y^2-4x-2y+6=0 and x^2+y^2-12x+2y+30=0

To find: The radical centre of the circle.

Solution:

  • Now we have provided three equations, let them be: S1, S2 and S3.

                 S1 = x^2 + y^2 + 2x + 6y = 0

                 S2 = x^2 + y^2 - 4x - 2y + 6 = 0

                 S3 = x^2 + y^2 - 12x + 2y + 30 = 0

  • Now to find the radical axis, we will do:
  • S2 - S3 = 0

                 x^2 + y^2 - 4x - 2y + 6 - ( x^2 + y^2 - 12x + 2y + 30 ) = 0

                 x^2 + y^2 - 4x - 2y + 6 - x^2 - y^2 + 12x - 2y - 30 = 0

                 8x - 4y - 24 = 0

                 8x - 4y = 24 ..........................(i)

  • S3 - S1 = 0

                 x^2 + y^2 - 12x + 2y + 30 - ( x^2 + y^2 + 2x + 6y ) = 0

                 x^2 + y^2 - 12x + 2y + 30 - x^2 - y^2 - 2x - 6y = 0

                 -14x - 4y + 30 = 0

                 14x + 4y = 30.........................(ii)

  • S1 - S2 = 0

                 x^2 + y^2 + 2x + 6y - ( x^2 + y^2 - 4x - 2y + 6 ) = 0

                 x^2 + y^2 + 2x + 6y - x^2 - y^2 + 4x + 2y - 6 = 0

                 6x + 8y - 6 = 0

                 6x + 8y = 6 ........................(iii)

  • From (i) and (ii), we have:

                 8x - 4y +  14x + 4y = 24 + 30

                 22x = 54

                 x = 2.45

  • Putting x in (i), we get:

                 8(2.45) - 4y = 24

                 y = -1.1

Answer:

              So (2.45,-1.1) is the radical centre.  

Similar questions