Physics, asked by Arjunreddy189, 1 year ago

The radii of curvature of a convex lens are 40cm and 10cm for each surface respectively. If the refractive index is 3/2 then the focal length of the lens is

Answers

Answered by rishu6845
2

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by Anonymous
2

Explanation:

We know that, focal depends upon the radius of curvature and refractive index.

here :

radius of curvature (R1) = 40 cm

Radius of curvature (R2) = - 10 cm.

refractive index (n) = 3/2

so,

 \frac{1}{f}  =  (n - 1)(\frac{1}{r1 }  -  \frac{1}{r2)}  \\  \frac{1}{f}  =  (\frac{3}{2}  - 1)( \frac{1}{40} -  \frac{1}{</u></em></strong><strong><em><u>-</u></em></strong><strong><em><u>10}  ) \\  \frac{1}{f}  = ( \frac{3 - 2 }{2} )( \frac{1</u></em></strong><strong><em><u>+</u></em></strong><strong><em><u>4}{40} ) \\  \frac{1}{f} =  \frac{1}{2}  \times ( \frac{ </u></em></strong><strong><em><u>5</u></em></strong><strong><em><u>}{40} )  \\  \frac{1}{f}  =  \frac{ </u></em></strong><strong><em><u>1</u></em></strong><strong><em><u>}{</u></em></strong><strong><em><u>16</u></em></strong><strong><em><u>}  \\ f =  \frac{ </u></em></strong><strong><em><u>16</u></em></strong><strong><em><u>}{</u></em></strong><strong><em><u>1</u></em></strong><strong><em><u>}

Similar questions