Math, asked by modsinghyt567, 7 months ago

The radii of the circles with Centers A and B are 3 cm and 4 cm respectively. Find d (A, B)​

Answers

Answered by gowdaramyar8
1

Answer:

may be my answer helps you

Step-by-step explanation:

Given

OandO

aretwocirclesitersectingatP&Qrespectively.

OP&O

ParetangentstothecircleswithcentersO

&O

respectively.OP=OQ=3cmandO

P=O

Q=4cm.

Tofindout−

ThelengthofthecommonchordPQ.

Solution−

OP&O

Paretangentstothecirclesatthepointofcontact

ofthetangetsPandalsotheyarelinesjoiningthecentres

tothepointofcontact.

∴∠OPO

=90

o

.

i.eΔOPO

isarightonewithOO

ashypotenuse.

(SimilarlyΔOQO

isarightonewithOO

ashypotenuse.)

⟹O

O

2

=OP

2

+O

P

2

⟹O

O=

3

2

+4

2

cm=5cm..........(i)

NowbetweenΔOQO

&ΔOPO

hypOO

iscommon,sideO

P=O

Q

ΔOQO

&ΔOPO

arecongruent.

⟹∠POM=∠QOM.Buttheyarelinearpair.

∴∠POM=∠QOM=90

o

⟹ΔPOM&ΔQOMarerighttriangles

withOP&OQashypotenuses.

SobetweenΔPOM=ΔQOMwehave

hypotenusesOP=OQand

sideOP=OQ(radiiofthesamecircle)

∴ΔPOMiscongruenttoΔQOM

⟹∠OMP=∠OMQ.Buttheyareadjacentangles.

∴∠OMP=OMQ=90

o

.......(ii)andPM=QM⟹2PM=PQ....(iii)

NowbetweenΔOO

P&ΔOPMwehave

∠OMP=∠OO

P=90

o

(fromii),∠POMcommon.

SoΔOO

P&ΔOPMaresimilar.

3

PM

=

OO

O

P

⟹PM=3×

5

4

cm=2.4cm.(fromi&iii)

i.ePQ=2PM=2×2.4cm=4.8cm

Ans−4.8cm.

Answered by kaurmanjot7753
1

Solution :

given AC=3cm

and BC=4cm

∴ABC=5cm

Let CP=ycm

and AP=xcm

CP^2+AP^2=AC^2

=> y^2+x^2=9

=> y^2=9−x^2

y^2+(5−x)^2=16

y^2=16−(5−x)^2

y^2=16−25−x^2+10x

9−x^2=−9−x^2+10x

18=10x

y^2=9−(1.8)^2

=24cm

CD=4.8 cm

Similar questions