The radii of the circular ends of a frustum of a cone are 14 cm and 8 cm. If the height of the frustum is 8 cm, find
(1) Slant height of frustum
(2) Total surface area of frustum
(3) Volume of frustum.
(π = 3.14)
Answers
Question :-
→ Given above ↑
Answer :-
(1) L = 10 cm
(2) TSA = 1507.2 cm²
(3) v = 3117.71 cm³
To Find :-
(1) Slant height
(2) Total surface area (TSA )
(3) Volume (v)
Solution :-
Given that ,
- Height of frustum (h) = 8cm
- r = 14 cm and R = 8 cm
hence ,
(1) Slant height (L)
(2) Total surface area
→ TSA = π(r + R) L + π r² + π R²
→ TSA = 220 π + 196π + 64π
→ TSA = 480 π
→ TSA = 480 × 3.14
→ TSA = 1507.2
(3) Volume
→ v =
→ v =
→ v =
→ v =
→ v = 3117.71 cm³
The radii of the circular ends of a frustum of a cone are 14 cm and 8 cm. If the height of the frustum is 8 cm, find
(1) Slant height of frustum
(2) Total surface area of frustum
(3) Volume of frustum.
(π = 3.14)
________________________
•1.Slant Hieght = 10 cm
•2.TSA = 1507.2 cm²
•3.Volume = 3117.71 cm³
____________________
To Find :-
• Slant height of frustum
• Total surface area of frustum
• Volume of frustum
___________________
Given,
Height of frustum (h) = 8cm
r = 14 cm and R = 8 cm
hence ,
=> TSA = π(r + R) L + π r² + π R²
=> TSA = 220 π + 196π + 64π
=> TSA = 480 π
=> TSA = 480 × 3.14
=> TSA = 1507.2
=> v =
=> v =
=> v =
=> v =
=> v = 3117.71 cm³