Math, asked by krishnatigerkgp57, 3 months ago

The radii of two circles are 19 cm and 9 cm respectively.

Find the radius of the circle which has circumference equal

to the sum of the circumferences of the two circles.​

Answers

Answered by SiddharthDharamChand
4

Answer:

answer 176

Step-by-step explanation:

first add both radius 19+9=28 now take circumference of circle 2 pie r where pie = 22upon 7 r = 28 now 2 into 7/22 into 28 which give you the

Answered by Sen0rita
72

Given : Radii of two circles are 19cm and 9cm respectively.

To Find : Radius of the circle which has circumference equal to the sum of the circumferences of the two circles.

____________________

Let

 \:  \:

  • Radius of first circle = R1
  • Radius of second circle = R2
  • Radius of largest circle = R

 \:  \:

As we know that :

 \:

\underline{\boxed{\tt\purple{\bigstar \: circumference \: of \: a \: circle \:  = 2\pi \: r}}}

 \:  \:

Firstly we'll find the sum of circumferences of two circles.

 \: \:

Put the values -

\tt:\implies \: sum \: of \: circumference  = 2\pi(R1 +  R2) \\  \\  \\ \tt:\implies \: sum \: of \: circumference  = 2\pi(19 + 9) \\  \\  \\ \tt:\implies \: sum \: of \: circumference = 2\pi(28) \\  \\  \\ \tt:\implies \: sum \: of \: circumference \: = 2 \times  \frac{22}{\cancel{7}}  \times \cancel{28} \\  \\  \\ \tt:\implies \: sum \: of \: circumference \:  = \underline{\boxed{\sf\purple{176cm}}} \bigstar

 \:  \:

Now, we'll find the circumference of the largest circle.

 \:  \:

\tt:\implies \: circumference \: of \: the \: largest \: circle \:  = 2\pi \: R \\  \\  \\ \tt:\implies \: 176 = 2\pi \: R \\  \\  \\ \tt:\implies \: \cancel \frac{176}{2}  = \pi \: R \\  \\  \\ \tt:\implies \: 88 =  \frac{22}{7} R \\  \\  \\ \tt:\implies \: R \:  =  \frac{\cancel88 \times 7}{\cancel22}  \\  \\  \\ \tt:\implies \: R \:  = 7 \times 4 \\  \\  \\ \tt:\implies \: R = \underline{\boxed{\tt\purple{28cm}}} \bigstar \\  \\  \\ \\  \sf\therefore{\underline{Hence, \: the \: radius \: of \: the \: largest \: circle \: i \: \bold{28cm}.}}

Similar questions