Math, asked by bhojpalkatre, 11 months ago

the radii of two cylinder are in the ratio 3:2 and Heights in the ratio 4:2. The ratio of their volumes is​



plzz help

Answers

Answered by yasi4011
0

Answer:

36:8

Step-by-step explanation:

is in the above picture...I hope it would be correct

Attachments:
Answered by Brâiñlynêha
4

\huge\mathbb{SOLUTION:-}

\bold{Given:-}\begin{cases}\sf{Radii \:if\: cylinders\:in\: ratio=3:2}\\ \sf{Height\:in\: ratio=4:2}\end{cases}

  • We have to find the ratio of their volumes

\boxed{\sf{Volume\:of\: cylinder=\pi r{}^{2}h}}

  • We have to find the ratio of volumes of two cylinder

  • Let the radius of first cylinder be 3r

  • and height be 4h

  • Now volume :-

\sf\implies  Volume\:of\: cylinder_1=\pi(3r){}^{2}\times 4h\\ \\ \sf\implies Volume\:of\: cylinder_1=\pi 9r{}^{2}\times 4h\\ \\ \sf\implies volume\:of\: cylinder_1=9r{}^{2}\pi 4h

\boxed{\sf{\red{Volume\:of\: cylinder_1= 9r{}^{2} \pi 4h}}}

  • Now the volume of 2nd cylinder
  • it's radius be 2r and height be 2h

\sf\implies  Volume\:of\:cylinder_2=\pi(2r){}^{2}\times 2h\\ \\ \sf\implies Volume\:of\: cylinder_2= \pi 4r{}^{2}\times 2h\\ \\ \sf\implies Volume\:of\: cylinder_2= \pi 4r{}^{2} 2h

\boxed{\sf{\red{Volume\:of\: cylinder_2=\pi 4r{}^{2} 2h}}}

  • NOW THE RATIO OF THEIR VOLUME

\boxed{\sf{Ratio=\frac{Volume\:of\: cylinder_1}{Volume\:of\: cylinder_2}}}

\sf\implies ratio=\frac{9\cancel{r{}^{2}}\cancel{\pi} \cancel{4h}}{4\cancel{r{}^{2}}\cancel{\pi} \cancel{2h}}\\ \\ \sf\implies Ratio= \frac{9\times 2}{4}\\ \\ \sf\implies Ratio=\cancel{\frac{18}{4}}\\ \\ \sf\implies Ratio=\frac{9}{2}\\ \\ \sf\implies ratio=9:2

\boxed{\sf{\purple{Ratio\:of\:their\:volumes=9:2}}}

#BAL

#answerwithquality

Similar questions