Geography, asked by bittukumarchs28, 4 months ago

The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio
5:3. Calculate the ratio of their curved surface areas.
war diameter of a gas cylinder is 20 cm. Find them
TL​

Answers

Answered by saniketkashyap
1

Answer:

The radii of two cylinder are in the ratio of 2:3

so , Radius of first cylinder is 2r

And , Radius of second cylinder is 3r

Height are in the ratio of 5:3 .

Then , Height of 1st cylinder = 5h

or Height of 2nd cylinder = 3h

Ratio of volume = volume of 1st cylinder/ volume of 2nd cylinder

V = π(2r)^2 × 5h / π(3r)^2 × 3h

V = 20rh / 27 rh

v = 20/ 27 .

The volume of cylinder is 20/27 is also known as the total surface area of the cylinder ( hollow ) .

Note :- TSA / V = πr^2 × hr^2 × h .

Answered by MrAnonymous412
5

   \\ \\\underline{\large \sf \: Correct  \: Question :-} \\  \\

The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5:3. Calculate

 \\   \\\underline{\large \sf \: Given  \: :-} \\  \\

 \\   \bigstar  \: \rm \: Ratio \: of\: radii\: of\: two\: cylinder\:  = 2 : 3 \\

 \\   \bigstar \:  \rm \: Ratio \: of\: height\: of\: two\: cylinder\:  = 5: 3 \\

 \\   \\\underline{\large \sf \: To \: find  \: :-} \\  \\

 \\  \rm \: (i) \: Ratio \: of \: the \:curved \: surface \: area \:  \: of \: the \: two \: cylinders \:  \\  \\

 \\   \\\underline{\large \sf \: Solution  \: :-} \\  \\

 \\  \\  \rm \: Let \:  r_1 \:  and  \: r_2 \: b e  \: the \:  radii  \: of \:  the \:  \\  \rm cylinders\: respectively \:  .\\  \\

 \\  \\  \rm \: Let \:  h_1 \:  and  \: h_2 \: b e  \: the \:  height\: of \:  the \:  \\  \rm cylinders\: respectively \:  .\\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \: Therefore, \: we \: have  \\  \\

 \\  \\  \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac {r_1}  {r_2} \:  =  \frac{2}{3}  \\  \\

 \\  \\  \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac {h_1}  {h_2} \:  =  \frac{5}{3}  \\  \\

 \\  \\  \rm \: Since ,\: we \: have\: to  \: find \:  the  \: ratio \:  of \:  curved  \: surface  \\  \rm \: area  \: of \:  two \:  cylinder . \: we  \: have, \\  \\

 \\  \\   \:  \:  \:  \:  \:  \:  \: \rm \frac{ \: Curved \: surface \: area \: of \: cylinde \: 1}{ \: Curved \: surface \: area \: of \: cylinde \: 2} \:  =  \:  \frac{2\pi r_1h_1  }{2\pi  r_2h_2}  \\  \\

 \\  \\  \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \bigg(\frac{r_1 }{r_2}  \bigg)  \bigg(\frac{h_1}{h_2}  \bigg) \\  \\

 \\  \\  \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \bigg(\frac{2}{3}  \bigg)   \: \bigg(\frac{5}{3}  \bigg) \\  \\

 \\  \\   \:  \:  \:  \:  \:  \:  \:   \underline{\boxed{\tt \frac{ \: Curved \: surface \: area \: of \: cylinde \: 1}{  \tt\: Curved \: surface \: area \: of \: cylinde \: 2} \:  =  \:   \bigg(\frac{10  }{9} \bigg)} } \\  \\

 \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \: \: \bf{the  \: ratio  \: of \:  their  \: curved \:  surface \:  areas \: is \:  \frac{10}{9} \:   .}}\\  \\

Similar questions