Math, asked by gargzzz, 3 months ago

The radius and height of a cylinder are in the ratio 4:7. Find the diameter of the
cylinder if its volume is 1188cm³.​

Answers

Answered by MagicalBeast
13

Given :

  • Radius of cylinder : Height of cylinder = 4:7
  • Volume of cylinder = 1188 cm³

To find :

Diameter of cylinder

Formula used:

  • Volume of cylinder = πr²h
  • Diameter = 2r

Solution :

Radius of cylinder : Height of cylinder = 4:7

\sf \implies \dfrac{Radius}{ \: Height}  \: = \:   \dfrac{4}{7}

\sf \implies  \: Height  \: = \:   \dfrac{7}{4}  \times Radius

________________________________

Now ,

Let radius = r

➝ Height = 7r/4

________________________________

Volume of cylinder = π r² h

\sf \implies \:Volume  \: of \:  cylinder  \: =  \: \pi r^2  \bigg( \dfrac{7r}{4}  \bigg)

\sf \implies \:1188 \:  {cm}^{3}   \: =  \:  \dfrac{22}{7}  r^2  \bigg( \dfrac{7r}{4}  \bigg)

\sf \implies \:1188 \:  {cm}^{3}   \: =  \:  \dfrac{11}{2}  r^3

\sf \implies \:   r^3 = 1188 \:  {cm}^{3} \times  \dfrac{2}{11}

\sf \implies \:   r^3 = 108 \times 2 \:  {cm}^{3}

\sf \implies \:   r^3 = 216 \:  {cm}^{3}

\sf \implies \:   r^3 =  \:  {(6 \: cm )}^{3}

\sf \implies \:   r = 6cm

________________________________

➝ Diameter = 2r

➝ Diameter = 2(6 cm)

➝ Diameter = 12cm

________________________________

ANSWER : 12 cm

Answered by Anonymous
2

Answer:

Volumeofcylinder=πr2(47r)\sf \implies \:1188 \: {cm}^{3} \: = \: \dfrac{22}{7} r^2 \bigg( \dfrac{7r}{4} \bigg) \\ 1188cm3=722r2(47r)\sf \implies \:1188 \: {cm}^{3} \: = \: \dfrac{11}{2} r^3 \\⟹1188cm3=211r3 \\ \sf \implies \: r^3 = 1188\: {cm}^{3} \times \dfrac{2}{11} \⟹r3=1188cm3×112\sf \implies \: r^3 = 108\times 2 \: {cm}^{3} \\  \\ ⟹r3=108×2cm3</p><p>\sf \implies \: r^3 = 216 \: {cm}^{3} \\⟹r3=216cm3\sf \implies \: r^3 = \: {(6 \: cm )}^{3} \\ ⟹r3=(6cm)3\sf \implies \: r = 6cm \\  \\ ⟹r=6cm

Similar questions