Math, asked by patilveeru2302, 1 year ago

The radius and height of a right circular cone are in the ratio 3:4 and its volume is 96pie cm cube what is the lsa

Answers

Answered by Pulkitraina2608
0

volume \: of \: cone \:  =  \frac{1}{3}  \times \pi \times  {r}^{2}  \times h  = 96\pi \:  {cm}^{3}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{3}  \times  {r}^{2}  \times h = 96 \:  {cm}^{3}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {r}^{2}  \times h = 96 \times 3 \\ let \: the \: radius \: and \: height \: be \: 3x  \: and \: 4x \: respectively \\ substituting \: the \: values \: we \: get \\  {r}^{2}  \times h = 96 \times 3 \\ 9 {x}^{2}  \times 4x = 96 \times 3 \\ 36 {x}^{3}  = 288 \\  {x}^{3}  = 8 \\ x = 2 \\ lsa = \: \pi \times r \times l \\  l =  \sqrt{ {r}^{2} +  {h}^{2}  }  \\  \:  \:  \:  \:  =  \sqrt{ {6}^{2}  +  {8}^{2} }  \\  \:  \:  \:  \:  \:  = 10 \\ so \: lsa = \pi \times 6 \times 10 \\  \:  \:  \:  \:  \:  = 60\pi \:  {cm}^{2}
Similar questions