the radius and slant height of a conical vessel are 35 cm and 91 cm respectively what is its capacity in litre
Answers
Answer:
85800 cm sq
Step-by-step explanation:
l sq. = r sq + h sq
91 sq = 53 sq + h sq
8281 - 1225=h sq
sq root 7056= h
h = 84
v(cone) = 1/3 x 22/7 x r sq x h
= 1/3 x 22/7 x 35 x 35 x 84
= 22 x 5 x 35 x 28
= 85800 cm sq
hope it helps
Do mark me as brilliant and also do follow me
Answer:
The required capacity of the vessel is 107800 cm³
Step-by-step explanation:
Given :
Radius of a vessel, r = 35 cm
Slant height of a vessel, l = 91 cm
To find :
the capacity of the vessel
Solution :
Since radius and slant height are given, let's find the height of the cone.
We know,
\underline{\boxed{\bf l=\sqrt{r^2+h^2}}}
l=
r
2
+h
2
h² = l² - r²
h² = 91² - 35²
h² = 8281 - 1225
h² = 7056
h = √7056
h = 84 cm
Volume of a cone is given by,
\boxed{\tt V=\dfrac{1}{3} \pi r^2h}
V=
3
1
πr
2
h
\begin{gathered}\longrightarrow \sf V=\dfrac{1}{3} \times \dfrac{22}{7} \times 35 \times 35 \times 84 \ cm^3 \\\\ \longrightarrow \sf V=22 \times 5 \times 35 \times 28 cm^3 \\\\ \longrightarrow \sf V=107800 \ cm^3\end{gathered}
⟶V=
3
1
×
7
22
×35×35×84 cm
3
⟶V=22×5×35×28cm
3
⟶V=107800 cm
3
Hence, the capacity of the vessel is 107800 cm³ (or) 0.1078 m³