Math, asked by Angelthakkar64731, 6 hours ago

The radius of a circle is 20% more than the height of art angle triangle .the base of the triangle is 36cm.if the area of triangle nd circle r equal ,what will be the area of circle

Answers

Answered by Starrex
14

\bigstar\boxed{\large\bf{\leadsto Area_{(circle)}=72\:cm^2}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\sf\underline{Appropriate\: question:}

❍ The radius of a circle is 20% more than the height of right angle triangle. The base of the triangle is 36cm . If the area of triangle and circle are equal ,what will be the area of circle ?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

\large\sf\underline{ Given:}

  • ➨ The radius of circle is 20 % more than the height of right angled triangle
  • ➨ The base of triangle is 36 cm
  • ➨ The area of triangle and circle are equal

\large\sf\purple{\underline{Formulas: }}

\underline{\boxed{\bf{ Area_{(circle)}=\pi r^2}}}

\underline{\boxed{\bf{ Area_{(triangle)}=\dfrac{1}{2}\times base \times height}}}

Let the height of triangle be x cm

Then, radius of circle [( 100 +20 ) = 120 % ]

ㅤㅤㅤㅤㅤ\sf{\longrightarrow (120\%\:of\:x)\:=\cancel{\dfrac{120}{100}}\times x}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{6x}{5}cm}

\sf{\longrightarrow Area\:of\: triangle=\dfrac{1}{2}\times 36\times x }

\sf{\longrightarrow Area\:of\: circle=\pi\times \left(\dfrac{6x}{5}\right)^2}

As both the area of triangle and circle are equal , then equating the area to obtain the value of x

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{1}{\cancel{2}}\times\cancel{36}\times x=\dfrac{22}{7}\times\dfrac{6x}{5}\times\dfrac{6x}{5}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow 18\times x=\dfrac{22}{7}\times\dfrac{6x}{5}\times\dfrac{6x}{5}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac {18\times  7\times 5\times 5\times 5}{22\times 6\times 6}=\cancel\dfrac{x}{x}\times x}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow x=\left(\dfrac{18\times 7\times 5\times 5\times 5}{22\times 6\times 6}\right) }

So , radius of circle :

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{6}{5}\times x}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{6}{5}\times\left(\dfrac{18\times 7\times 5\times 5\times 5}{22\times 6\times 6}\right)}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{105}{22}cm}

\large\sf\underline{ \dag Therefore,\:area\:of\: circle:}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow\left (\dfrac{22}{7}\times\dfrac{105}{22}\times\dfrac{105}{22}\right)}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow\left (\dfrac{1575}{22}\right)cm^2}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow 71.6cm^2}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Similar questions