Math, asked by aaaa4931, 9 months ago

The radius of a cone is 3 and vertical height is 4. find the area of the curved surface.

Answers

Answered by shivram7504
0

CSA= 1/3πr²h

so,

= 1/3*22/7*9*4

= 22/21*36

= 22/7*12

= 37.714 units ..

since u didn't mention any unit I have done this way...if cm means add cm in the place of cm.....

Answered by Anonymous
25

\setlength{\unitlength}{20} \begin{picture}(6,6) \linethickness{1}\qbezier(1,1)( 3, - 0)(5,1)\qbezier(1,1)(3,2)(5,1) \qbezier(1,1)(1,1)(3,5)\qbezier(5,1)(5,1)(3,5)\put(3,1){\line(0,1){4}}\put(3,1){\line(1,0){2}}\put(3.1,3){$ \tt h = 4 cm $ }\put(2.5,0.65){$ \tt r = 3 cm $ }\end{picture}

  \boxed{\huge  \underline \mathfrak \red{given}}

 { \rm{the \: radius \: of \: a \: cone = 3 \: and  \: height = 4}}

\boxed{\huge  \underline \mathfrak \green{to \: find}}

 \:  \:  \:  \:  \:  \: { \rm{the \: curve \: surface \: area \: of \: cone}}

\boxed{\textbf{ \large \underline{ \blue{solution}}}}

{ \rm{as \: we \: know \: }}

{ \rm{c.s.a =  \pi rl}}

{ \rm{ by \: the \: rule \: of \: pythagoras \: theoram}}

{ \rm { {l}^{2}  =  {r}^{2} +  {h}^{2}  }}

 { \rm{{l}  =   \sqrt{ {3}^{2}  +  {4}^{2}  } }}

 { \rm{l \:  =  \sqrt{9 + 16} }}

{ \rm{l =  \sqrt{25}  \: \therefore \: l \:  = 5}}

 { \rm{ so \: the \: value \: of \: l  = 5}}

{ \rm{ \therefore \: c.s.a. =  \frac{22}{7}  \times 3 \times 5}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \rm{ =  \frac{330}{7}  }}

{ \rm{c.s.a \:  = 47.14}}

{ \rm{ \large{so \: the \: curve \: surfce \: area \: is \: 47.14}}}

Similar questions