Math, asked by Saqibsouran428, 1 year ago

The radius of a cone is 7 cm and area of curved surface is 176 cm^2 . Find the slant height.

Answers

Answered by Brenquoler
379

Radius of cone(r) = 7 cm

Curved surface area(C.S.A)= 176cm²

We know, C.S.A. = πrl

⇒ πrl = 176

⇒ 22/7 x 7 x l = 176

or l = 8

Therefore, slant height of the cone is

 { \orange{ \bf{8cm}}}

{\fcolorbox{blue}{black}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: DecentMortal\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Answered by BlackAura
107

{ \underline{\sf{\large{\color{pink}{Given}}}}}

  • Radius = 7 cm
  • Curved surface area = 176 cm²

{\underline{\sf{\large{\color{pink}{To \:  find}}}}}

  • Slant height( l) =?

{\underline{\sf{\large{\color{pink}{Solution}}}}}

✏️The curved surface area of the cone is defined as the area of the cone excluding the base.

✏️Curved surface Area of the cone is given as :-

 { \underline{ \boxed{ \sf{ \color{grey}{C.S.A = \pi \times r \times l}}}}}

where

  • r denotes the Radius of the cone.

Subsitute the value in the above formula to Find the slant height of the cone.-:

 \sf{ : \implies \: \pi \: rl =176 } \\  \\  \sf{ : \implies \frac{22}{7} \times 7 \times l = 176} \\  \\  \sf{ :  \implies \: l =  \frac{176}{22} } \\  \\  \sf{:\implies \:l = 8cm }

 \sf \underline{\therefore\:  the\:  slant \:  height \:  is \:  8 \:  cm}

________________________

More To Know !!

✏️Slant height of the cone, L = √(h2+r2)

✏️T.S.A of cone = πr (r + L)

✏️C.S.A of cuboid = 2h(l + b)

✏️ T.S.A of cuboid = 2(lb + bh + lh)

✏️solid sphere T.S.A/C.S.A = 4πr2

________________________

Similar questions