Math, asked by nlvraghavendra6989, 1 month ago

The radius of a cone is 7 cm and area of lateral surface is 176 CM square find the slant height

Answers

Answered by Anonymous
48

Answer:

Given :-

  • The radius of a cone is 7 cm and area of lateral surface is 176 cm².

To Find :-

  • What is the slant height of cone.

Formula Used :-

\clubsuit Lateral Surface Area or LSA of Cone Formula :

\mapsto \sf\boxed{\bold{\pink{Lateral\: Surface\: Area_{(Cone)} =\: {\pi}rl}}}\\

where,

  • π = pie (22/7)
  • r = Radius
  • l = Slant Height

Solution :-

Let,

\mapsto \sf\bold{Slant\: Height\: of\: Cone =\: l\: cm}\\

Given :

\bigstar\: \rm{\bold{Lateral\: Surface\: Area =\: 176\; cm^2}}\\

\bigstar\: \rm{\bold{Radius =\: 7\: cm}}

According to the question by using the formula we get,

\longrightarrow \sf \dfrac{22}{7} \times 7 \times l =\: 176

\longrightarrow \sf \dfrac{22}{7} \times 7l =\: 176

\longrightarrow \sf 7l =\: \dfrac{176 \times 7}{22}

\longrightarrow \sf 7l =\: \dfrac{\cancel{1232}}{\cancel{22}}

\longrightarrow \sf 7l =\: 56

\longrightarrow \sf l =\: \dfrac{\cancel{56}}{\cancel{7}}

\longrightarrow \sf\bold{\red{l =\: 8\: cm}}

Hence,

\mapsto \sf\bold{\purple{Slant\: Height\: of\: Cone =\: 8\: cm}}

\therefore The slant height of cone is 8 cm .

Answered by Saby123
36

Solution :

 \setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r}}\put(9.5,10){\sf{h}}\end{picture}

• Radius of the cone : 7 cm

• LSA of the cone : 176 cm² .

Let us assume that the radius of the cone is r .

LSA = πrl ( l is the slant height)

> 22/7 r l = 176

r = 7 cm as mentioned .

> 22l = 176

> l = 8 cm .

Answer : The slant height of the cone is 8 cm .

__________________________________________

Similar questions