Math, asked by reenarathourg, 7 days ago

The Radius of a right circular cylinder is 7 cm and it's hieght is 20cm .find its curved surface area and total surface area​

Answers

Answered by StarFighter
11

Answer:

Given :-

  • The radius of a right circular cylinder is 7 cm and its height is 20 cm.

To Find :-

  • What is the curved surface area and total surface area of cylinder.

Solution :-

Curved Surface Area or CSA Of Cylinder :

Given :

  • Radius = 7 cm
  • Height = 20 cm

According to the question by using the formula we get,

\bigstar \: \: \sf\boxed{\bold{\pink{C.S.A_{(Cylinder)} =\: 2{\pi}rh}}}\: \: \: \bigstar\\

where,

  • C.S.A = Curved Surface Area
  • π = Pie or 22/7
  • r = Radius
  • h = Height

By putting the values we get,

\implies \sf C.S.A_{(Cylinder)} =\: 2 \times \dfrac{22}{7} \times 7 \times 20\\

\implies \sf C.S.A_{(Cylinder)} =\: \dfrac{44}{7} \times 140\\

\implies \sf C.S.A_{(Cylinder)} =\: \dfrac{6160}{7}\\

\implies \sf\bold{\red{C.S.A_{(Cylinder)} =\: 880\: cm^2}}\\

\therefore The curved surface area of a cylinder is 880 cm² .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Total Surface Area or TSA Of Cylinder :

Given :

  • Radius = 7 cm
  • Height = 20 cm

According to the question by using the formula we get,

\bigstar \: \: \sf\boxed{\bold{\pink{T.S.A_{(Cylinder)} =\: 2{\pi}r(r + h)}}}\: \: \: \bigstar\\

where,

  • T.S.A = Total Surface Area
  • π = Pie or 22/7
  • r = Radius
  • h = Height

By putting the values we get,

\implies \sf T.S.A_{(Cylinder)} =\: 2 \times \dfrac{22}{7} \times 7(7 + 20)\\

\implies \sf T.S.A_{(Cylinder)} =\: \dfrac{44}{7} \times 7(27)\\

\implies \sf T.S.A_{(Cylinder)} =\: \dfrac{44}{7} \times 189\\

\implies \sf T.S.A_{(Cylinder)} =\: \dfrac{8316}{7}

\implies \sf\bold{\red{T.S.A_{(Cylinder)} =\: 1188\: cm^2}}\\

\therefore The total surface area of a cylinder is 1188 cm² .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by TheAestheticBoy
7

Question :-

  • The Radius of a Right Circular Cylinder is 7 cm and it's height is 20 cm . Find its Curved Surface Area and Total Surface Area .

⠀⠀⠀⠀⠀

Answer :-

  • Curved Surface Area = 880 cm² .
  • Total Surface Area = 1188 cm² .

⠀⠀⠀⠀⠀

Explanation :-

  • Here, Radius of Cylinder is given 7 cm and Height of Cylinder is 20 cm . And, we have to calculate the Curved Surface Area and the Total Surface Area .

⠀⠀⠀⠀⠀

First , we will find Curved Surface Area :-

⠀⠀⠀⠀⠀

\dag \:  \sf{Curved \: Surface \: Area = 2\pi r h} \\  \\  \dashrightarrow \:  \sf{C.S.A = 2 \times  \frac{22}{7} \times 7 \times 20 } \\  \\  \dashrightarrow \:  \sf{C.S.A =  \frac{44}{7 } \times 7 \times 20 } \\  \\  \dashrightarrow \:  \sf{C.S.A =  \frac{44}{7} \times 140 } \\  \\  \dashrightarrow \:  \sf{C.S.A = \frac{6160}{7}  } \\  \\  \dashrightarrow \:  \sf{C.S.A = 880 \: cm {}^{2} }

⠀⠀⠀⠀⠀

Now , we will find Total Surface Area :-

⠀⠀⠀⠀⠀

\dag \:  \sf{Total \: Surface \: Area = 2 \pi r \:  \: (R + H)} \\  \\  \dashrightarrow \:  \sf{T.S.A = 2 \times  \frac{22}{7}  \times 7 \:  \: (7 + 20)} \\  \\  \dashrightarrow \:  \sf{T.S.A = \frac{44}{7}   \times 7 \:  \: (7 + 20) } \\  \\  \dashrightarrow \:  \sf{T.S.A =  \frac{44}{7}  \times 7 \:  \: (27)} \\  \\  \dashrightarrow \:  \sf{T.S.A =  \frac{44}{7} \times 189 } \\  \\  \dashrightarrow  \:  \sf{T.S.A = \frac{8316}{7}  } \\  \\  \dashrightarrow \:  \sf{T.S.A =1188 \: cm {}^{2}  }

⠀⠀⠀⠀⠀

Hence :-

  • Curved Surface Area = 880 cm² .
  • Total Surface Area = 1188 cm² .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions