the radius of a solid iron sphere is 8cm.eight rings of iron plate of external radius 20/3cm and tckness 3cm are made by melting their sphere.find the internal diameter of each ring
Answers
Radius of the iron sphere = 8 cm
External radius of the 8 rings of iron plates = 20/3 cm
Thickness of the 8 rings of iron plates 3 cm
Let internal radius of the ring be r cm
Volume of the sphere = 4/3πr³
⇒ 4/3*22/7*8*8*8
⇒ 45056/21
= 2145.52 cm³
Now, it can be assumed that each ring of iron plate is a hollow cylindrical shell having internal radius 'r' cm and external radius 20/3 cm along with the height 3 cm
Volume of each ring = π*(R² - r²)h
⇒ 3π*[(20/3)² - (r)²]
⇒ Volume of 8 rings = 8*3π[(20/3)² - (r)²]
⇒ 24π*[(20/3)² - (r)²]
Now, volume of sphere = Volume of 8 iron rings
⇒ 2145.52 = 24π[(20/3)² - (r)²]
⇒ 2145.52 = 24*22/7(400/9 - r²)
⇒ 2145.52*7 = 528(400/9 - r²)
⇒ 15018.64/528 = 400/9 - r²
⇒ r² = 44.44 - 28.44
⇒ r² = 16
⇒ r = √16
⇒ r = 4 cm
So, internal radius of the each ring is 4 cm.
Then, diameter = 4*2
= 8 cm
Answer.
Answer:
Step-by-step explanation:
Radius of the iron sphere = 8 cm
External radius of the 8 rings of iron plates = 20/3 cm
Thickness of the 8 rings of iron plates 3 cm
Let internal radius of the ring be r cm
Volume of the sphere = 4/3πr³
⇒ 4/3*22/7*8*8*8
⇒ 45056/21
= 2145.52 cm³
Now, it can be assumed that each ring of iron plate is a hollow cylindrical shell having internal radius 'r' cm and external radius 20/3 cm along with the height 3 cm
Volume of each ring = π*(R² - r²)h
⇒ 3π*[(20/3)² - (r)²]
⇒ Volume of 8 rings = 8*3π[(20/3)² - (r)²]
⇒ 24π*[(20/3)² - (r)²]
Now, volume of sphere = Volume of 8 iron rings
⇒ 2145.52 = 24π[(20/3)² - (r)²]
⇒ 2145.52 = 24*22/7(400/9 - r²)
⇒ 2145.52*7 = 528(400/9 - r²)
⇒ 15018.64/528 = 400/9 - r²
⇒ r² = 44.44 - 28.44
⇒ r² = 16
⇒ r = √16
⇒ r = 4 cm
So, internal radius of the each ring is 4 cm.
Then, diameter = 4*2
= 8 cm
Answer.
Hope it help u :))