Math, asked by arya1404, 10 months ago

The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped
into it. Find the ratio of surface areas of the balloon in the two cases.​

Answers

Answered by Anonymous
8

Let\:the\: initial\:Radius\:be R_{1}

Let\:the\:final\:Radius\:be R_{2}

\bold\red{\boxed{Surface\:area = \dfrac{3}{4}πr^{2}}}

______________________________________

Surface\:area\:for\:R_{1}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×\dfrac{22}{7} × 7^{2}}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×\dfrac{22}{7} × 49}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×22 × 7}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×154}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{462}{4}}}

\text{Hence,the surface area of Circle with initial radius is 115.5 or }\dfrac{462}{4}

______________________________________

Surface\:area\:for\:R_{2}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×\dfrac{22}{7} × 14^{2}}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×\dfrac{22}{7} × 196cm^{2}}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4}×22 × 28}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{3}{4} × 616cm^{2}}}

\Rightarrow\bold\blue{\boxed{Surface\:area = \dfrac{1848}{4}}}

______________________________________

ATQ

S_{2} - S_{1} [S represents the surface area]

\dfrac{1848}{4} - \dfrac{462}{4}

\dfrac{1386}{4}\:or\:346.5

______________________________________ \mathcal{BE \: BRAINLY}

Answered by sourya1794
45

{\bold{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

\underbrace{\bf\:For\:{1}^{st}\:case}

\bf\:Given:-

  • \bf\:Radius=7\:cm

\rm\longrightarrow\:S.A=\:4\pi{r}^{2}

\rm\longrightarrow\:S.A=\:4\times\:\dfrac{22}{7}\times\:{(7)}^{2}

\rm\longrightarrow\:S.A=\:4\times\:\dfrac{22}{\cancel{7}}\times\:\cancel{7}\times\:7

\rm\longrightarrow\:S.A=\:4\times\:22\times\:7

\rm\longrightarrow\:S.A=\:616\:c{m}^{2}

\underbrace{\bf\:For\:{2}^{nd}\:case}

\bf\:Given:-

  • \bf\:Radius=14\:cm

\rm\longrightarrow\:S.A=\:4\pi{r}^{2}

\rm\longrightarrow\:S.A=\:4\times\:\dfrac{22}{7}\times\:{(14)}^{2}

\rm\longrightarrow\:S.A=\:4\times\:\dfrac{22}{\cancel{7}}\times\:\cancel{14}\times\:14

\rm\longrightarrow\:S.A=\:4\times\:22\times\:2\times\:14

\rm\longrightarrow\:S.A=2464\:c{m}^{2}

Now, we have

\rm\purple{{In\:first\:case,}}

  • \rm\:S.A=616\:c{m}^{2}

\rm\orange{{In\: second\:case,}}

  • \rm\:S.A=2464\:c{m}^{2}

then,

\rm\longrightarrow\:Ratio\:of\:S.A=\dfrac{616}{2464}

\rm\longrightarrow\:Ratio\:of\:S.A=\dfrac{1}{4}

\rm\longrightarrow\:Ratio\:of\:S.A=1:4

Hence,the ratio of surface area of balloon will be 1:4.

Similar questions