Math, asked by rituraj40, 1 year ago

the radius of curvature of the curve y = ex at the point (0,1) is answer

Answers

Answered by MaheswariS
22

\textbf{Concept used:}

\text{The radius of curvature of the given curve y=f(x) is}

\bf\;R=\displaystyle\frac{[1+(\frac{dy}{dx})^2]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}

\text{Given curve is}\;y=e^x

\text{Then,}

\displaystyle\frac{dy}{dx}=e^x

\displaystyle\frac{d^2y}{dx^2}=e^x

\text{At the point (0,1)}

\displaystyle\frac{dy}{dx}=e^0=1

\displaystyle\frac{d^2y}{dx^2}=e^0=1

\text{Radius of curvature}

\bf\;R=\displaystyle\frac{[1+(\frac{dy}{dx})^2]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}

R=\displaystyle\frac{[1+(1)^2]^{\frac{3}{2}}}{1}

R=\displaystyle\;2^{\frac{3}{2}}

R=\displaystyle\;2\sqrt{2}

\therefore\textbf{Radius of curvature is }\bf\;2\sqrt{2}

Answered by tejasware8
0

Your answer is Right

2 sqrt 2 is The Right Answer

Similar questions