Math, asked by yaswanthi3971, 1 year ago

The radius of the base and the hight of right circular cone are 7 cm and 24 cm respectively. Find the volume and total surface area of the cone

Answers

Answered by nikolatesla2
0
volume of cone = πr^2h/3
3.14×7×7×24/3
1,230.88 cm^3
total surface area of cone =πr(r+l)
first find slant hight
slant hight = root24^2+7^2
slant hight = root625
slant hight = 25 cm
3.14×7 (7+25)
703.36 cm^2
Answered by SENORlTA
2

Answer:

GIVEN :-

❥ Radius of the base of a right circular cone = 7 cm

❥ Height of a right circular cone = 24 cm

Step-by-step explanation:

Volume of a right circular cone = πr² h

  • ⅓ × \frac{22}{7} × 7 × 7 × 24
  • 1,232 cm³

\large\fbox\green{ Volume \: = \: 1232 \: cm³ }

Slant height of the cone (l) = \sqrt{ 24² \: + \: 7² }

  • \sqrt{ 576 \: + \: 49}
  • \sqrt{ 625 }
  • 25 cm³

Total surface area of a right circular cone = πr (r + l)

  • \frac{ 22 }{ 7 } × 7 (7 + 25)

  • \frac{ 22 }{ 7 } × 7 × 32

  • 704 cm²

\large\fbox\green{ TSA~of~cone~=~704~cm²~}

Similar questions