Math, asked by Anonymous, 4 months ago

The radius of the base of a cylinder is 2.1 cm and height 5 cm, then its volume is​

Answers

Answered by DüllStâr
72

 \bigstar \: \frak{Diagram}

 \\

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{2.1 \: cm}}\put(9,17.5){\sf{5 \: cm}}\end{picture}

 \\

 \bigstar \: \frak{Required \: Solution }

 \\

\text{\red{Given:-}}

 \\

  • Radius of cylinder = 2.1 cm

 \\

  • Height of cylinder = 5cm

 \\

\text{\pink{To find:-}}

 \\

  • Volume of Cylinder

 \\

We know

 \\

 \bigstar \boxed{ \rm{Volume \: of \: cylinder = \pi {r}^{2}h }}

 \\

By using this formula we can find value of volume of Cylinder

 \\

 \dashrightarrow\sf Volume \: of \: cylinder = \pi {r}^{2}h

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{22}{7}  \times {(2.1)}^{2} \times 5 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{22}{7}  \times 2.1 \times 2.1 \times 5 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{22}{7}  \times  \dfrac{21}{10}  \times  \dfrac{21}{10}  \times 5 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{22}{\cancel7}  \times  \dfrac{\cancel{21}}{10}  \times  \dfrac{21}{\cancel{10}}  \times \cancel5 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{22}{1}  \times  \dfrac{3}{10}  \times  \dfrac{21}{2}  \times 1 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{\cancel{22}}{1}  \times  \dfrac{3}{10}  \times  \dfrac{21}{\cancel2}  \times 1 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{11}{1}  \times  \dfrac{3}{10}  \times  \dfrac{21}{1}  \times 1 \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{33 \times 21}{10} \\

 \\

 \dashrightarrow\sf Volume \: of \: cylinder =  \dfrac{693}{10} \\

 \\

 \dashrightarrow \underline{ \boxed{\sf Volume \: of \: cylinder = 69.3 \: cm}}

 \\

 \therefore \:  \underline{ \sf Volume \: of \: cylinder =  \bf69.3 \: cm}

 \\

 \bigstar \: \frak{Know~more}

 \\

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

Similar questions